精英家教网 > 高中数学 > 题目详情
在公差d≠0的等差数列{an}中,已知a1=-1,且a2,a4,a12三项成等比数列.求:
(1)数列{an}中的第10项a10的值;
(2)数列{an}的前20项和S20
考点:等差数列的前n项和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由等比数列的性质列式求出公差,然后直接代入等差数列的通项公式得答案;
(2)直接由等比数列的前n项和求值.
解答: 解:(1)由a2,a4,a12三项成等比数列,得
a42=a2a12,即(-1+3d)2=(-1+d)(-1+11d),
整理得:2d2-6d=0,
∵d≠0,∴d=3.
∴a10=a1+9d=-1+9×3=26;
(2)S20=-1×20+
20×(20-1)×3
2
=550
点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(1)求证方程f(x)=g(x)有两个不同的实根;
(2)设方程f(x)=g(x)的两实根为x1,x2求|x1-x2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(
2
π
4
),直线l的极坐标方程为ρcos(θ-
π
4
)=a,.
(1)若点A在直线l上,求直线l的直角坐标方程;
(2)圆C的参数方程为
x=2+cosα
y=sinα
(α为参数),若直线l与圆C相交的弦长为
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

sinα+sin(α+
3
)+sin(α+
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,a2=8,数列{an-1-2an}是公比为2的等比数列,则下列判断正确的是(  )
A、{an}是等差数列
B、{an}是等比数列
C、{
an
2n
}是等差数列
D、{
an
2n
}是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中是偶函数的是(  )
A、y=sinx
B、y=tanx
C、y=cosx
D、y=cos(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
cos(π-α)tanα
sin(π+α)
的结果是(  )
A、sinαB、-cosα
C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

时间过了2h,分针转过
 
弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
cos2ωx+sinωxcosωx(ω>0)的最小正周期为π.
(Ⅰ)求f(
π
6
)的值;
(Ⅱ)求f(x)在闭区间[-
π
3
π
3
]上的最大值和最小值.

查看答案和解析>>

同步练习册答案