精英家教网 > 高中数学 > 题目详情

已知是自然对数的底数,函数.
(1)求函数的单调递增区间;
(2)当时,函数的极大值为,求的值.

(1)详见解析;(2).

解析试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值等基础知识,考查学生的分析问题解决问题的能力和计算能力.第一问,先求函数的导数,利用单调递增,单调递减,但在解题过程中需讨论a的正负;第二问,利用第一问的结论,函数的单调性,确定函数的极大值在时取得,将代入中得到极大值,列出方程解出a的值,得到结论.
试题解析:(1)函数的定义域为.求导得   3分
时,令,解得,此时函数的单调递增区间为;          5分
时,令,解得,此时函数的单调递增区间为  7分
(2)由(1)可知,当时,函数在区间上单调递减,在上单调递增,于是当时,函数取到极大值,极大值为
的值为          13分
考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若上恒成立,求所有实数的值;
(3)对任意的,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)试讨论函数的单调性;
(2)设函数,当函数有零点时,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).

(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若对恒成立,求实数的取值范围;
(3)设,在(1)的条件下,证明当时,对任意两个不相等的正数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+ln(x+1).
(1)当a=时,求函数f(x)的单调区间;
(2)当时,函数y=f(x)图像上的点都在所表示的平面区域内,求实数a的取值范围;
(3)求证:(其中,e是自然数对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若函数在区间的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),其中
(1)若曲线在点处相交且有相同的切线,求的值;
(2)设,若对于任意的,函数在区间上的值恒为负数,求的取值范围.

查看答案和解析>>

同步练习册答案