精英家教网 > 高中数学 > 题目详情
17.已知实数x,y满足$\left\{\begin{array}{l}2x-y-4≤0\\ x-y+2≥0\\ x≥2\end{array}\right.$,则z=3x-y的最大值为10.

分析 熟悉画出可行域,根据目标函数的几何意义求最大值即可.

解答 解:由已知的不等式组得到平面区域如图
根据z=3x-y得到y=3x-z,
当此直线经过图中C时在y轴截距最小,z最大,
由$\left\{\begin{array}{l}{2x-y-4=0}\\{x-y+2=0}\end{array}\right.$得到C(6,8),
所以z的最大值为3×6-8=10;
故答案为:10.

点评 本题考查了简单线性规划问题;画出可行域,利用目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知关于x的方程$\sqrt{{x^2}-1}$=ax-2有且只有一个解,则实数a的取值范围为[-$\sqrt{5}$,-1)∪(1,$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),且离心率为$\frac{\sqrt{3}}{2}$
(1)求椭圆的标准方程;
(2)已知点P(4,0),椭圆内部是否存在一个定点,过此点的直线交椭圆于M,N两点,且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此点,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一次抽样调查中测得样本的5个样本点,数值如表:
x0.250.5124
y1612521
(1)作出散点图,并判断y与x之间是否具有相关关系.若y与x非线性关系,应选择下列哪个模型更合适?(y=$\frac{k}{x}$+b,y=k•lnx+b,y=eax+b
(2)请利用前四组数据,试建立y与x之间的回归方程.(保留小数点后1位有效数字)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点P(-2,0)的双曲线C与椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦点相同,则双曲线C的渐近线方程是(  )
A.$y=±\frac{{\sqrt{3}}}{3}x$B.$y=±\sqrt{3}x$C.$y=±\frac{1}{2}x$D.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=sin(2x+$\frac{π}{3}$),则下列结论正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{3}$对称
B.f(x)的图象关于点($\frac{π}{4}$,0)对称
C.把f(x)的图象向左平移$\frac{π}{12}$个单位长度,得到一个偶函数的图象
D.f(x)的最小正周期为π,且在[0,$\frac{π}{6}$]上为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥S-ABC,底面△ABC为边长为2的正三角形,侧棱SA=SC=$\sqrt{2}$,SB=2
(1)求证:AC⊥SB;
(2)A点到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.古代数学家杨辉在沈括的隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由a×a个球组成,以下各层的长、宽依次各增加过一个球,共有n层,最下层(即下底)由b×b个球组成,杨辉给出求方垛中圆球总数的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根据以上材料,我们可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C的准线为x=-1.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)斜率为$\sqrt{3}$的直线l过抛物线C的焦点F,与抛物线C交于A,B两点,求|AB|的值.

查看答案和解析>>

同步练习册答案