| A. | [2kπ$-\frac{π}{3}$,2kπ$-\frac{π}{6}$](k∈Z) | B. | [2kπ$+\frac{π}{3}$,2kπ$+\frac{11π}{6}$](k∈Z) | ||
| C. | [2kπ$-\frac{π}{6}$,2kπ$+\frac{π}{3}$](k∈Z) | D. | [2kπ$+\frac{π}{3}$,2kπ$+\frac{7π}{6}$](k∈Z) |
分析 对f(x)求导,由导函数小于等于0,确定出递减区间范围,则区间[t,t+$\frac{π}{2}$]在此区间内.
解答 解:∵f(x)=x-2sinx
∴f′(x)=1-2cosx
令f′(x)≤0,得:-$\frac{π}{3}$+2kπ≤x≤$\frac{π}{3}$+2kπ
∵f(x)在区间[t,t+$\frac{π}{2}$]上的减函数,
∴-$\frac{π}{3}$+2kπ≤t≤$\frac{π}{3}$+2kπ
-$\frac{π}{3}$+2kπ≤t+$\frac{π}{2}$≤$\frac{π}{3}$+2kπ
∴-$\frac{π}{3}$+2kπ≤x≤-$\frac{π}{6}$+2kπ
故选A
点评 本题考查函数求导,以及三角函数求范围问题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}c{m^3}$ | B. | $\frac{4}{3}c{m^3}$ | C. | $\frac{2}{3}c{m^3}$ | D. | $\frac{1}{3}c{m^3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,0)∪(0,$\frac{1}{2}$) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Sn•Tn=1 | B. | Sn•Tn=$\frac{1}{{q}^{n}}$ | C. | Sn•Tn=qn•Tn | D. | Sn=qn-1•Tn |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com