精英家教网 > 高中数学 > 题目详情
8.为了解学生喜欢数学是否与性别有关,对100个学生进行了问卷调查,得到了如下的列联表:
喜欢数学不喜欢数学合计
男生40
女生30
合计100
已知在全部100人中随机抽取1人抽到喜欢数学的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上面的列联表补充完整(不写计算过程);
(Ⅱ)能否在犯错误的概率不超过1%的前提下认为喜欢数学与性别有关系?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
下面的临界值表供参考:
P(K2≥k) 0.50  0.40 0.25 0.15 0.10 0.050.025  0.0100.005  0.001
 k0.455 0.708  1.3232.072  2.706 3.841 5.024 6.635 7.87910.828 

分析 (Ⅰ)结合题中所给的条件完成列联表即可;
(Ⅱ)结合(1)中的列联表结合题意计算 K2的值即可确定喜欢数学是否与性别有关.

解答 解:(Ⅰ)列联表补充如下:

喜欢数学不喜欢数学合计
男生401050
女生203050
合计6040100
(Ⅱ)由列联表中的结论可得:${K}^{2}=\frac{100×{(40×30-20×10)}^{2}}{60×40×50×50}≈16.667>6.635$,
则在犯错误的概率不超过1%的前提下认为喜欢数学与性别有关系.

点评 本题考查了列联表的概念,独立性检验的思想及其应用等,重点考查学生的计算能力和对基础概念的理解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.过原点的直线与椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1交于A、B两点,F1,F2为椭圆的焦点,则四边形AF1BF2面积的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,空间四边形OABC中,$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$,$\overrightarrow{OC}=\overrightarrow c$,点M在线段OA上,且OM=2MA,点N为BC的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c-\frac{2}{3}\overrightarrow a$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$D.$\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC中,a,b,c分别为A,B,C的对边,acosA=bcosB,则△ABC为(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f[{f({\frac{1}{9}})}]$的值为(  )
A.$\frac{1}{4}$B.4C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.我国是世界上严重缺水的国家,某市政府为了制定合理的节水方案,对居民用水进行了调查,通过抽样,获得了100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)估计居民月均用水量的中位数;
(Ⅲ)若居民用水量小于0.5吨,将被授予“节水达人”称号,在[0,0.5)、[4,4.5]两组种任选两人,求至少有一位“节水达人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数茎叶图如图所示,去掉一个最高分和一个最低分后,所剩数据的平均数为85.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)满足f(x-1)=2x+3a,且f(a)=7.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若A⊆B,求实数m的取值范围;
(3)若B⊆A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案