精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),其中.以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求出曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线交于 两点,记点 相应的参数分别为 ,当时,求的值.

【答案】(1) ;(2)4

【解析】试题分析:(1)曲线的参数方程为利用平方法消去参数可得出曲线的普通方程,由曲线的极坐标方程利用 即可得曲线的直角坐标方程;(2)由题知直线恒过定点,又,由参数方程的几何意义知是线段的中点,由垂径定理可得的值.

试题解析:(1)曲线的参数方程为为参数),

所以: 的普通方程: ,其中

曲线的极坐标方程为

所以: 的直角坐标方程: .

(2)由题知直线恒过定点,又

由参数方程的几何意义知是线段的中点,

曲线是以为圆心,半径的圆,

.

由垂径定理知: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足, .

(1)求证:

(2)求证:

(3)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数

判断如下两个命题的真假:

命题甲: 在区间上是增函数;

命题乙: 在区间上恰有两个零点,且.

能使命题甲、乙均为真的函数的序号是

A. ① B. ② C. ①③ D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F是抛物线E上一点,且

1求抛物线E的标准方程;

2设点B是抛物线E上异于点A的任意一点,直线AB与直线交于点P,过点Px轴的垂线交抛物线E于点M,设直线BM的方程为kb均为实数,请用k的代数式表示b,并说明直线BM过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记

(1)试用表示的长;

(2)试确定点的位置,使两条栈道长度之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的离心率与双曲线的离心率互为倒数,且过点

1)求椭圆C的方程;

2)过作两条直线与圆相切且分别交椭圆于MN两点.

求证:直线MN的斜率为定值;

MON面积的最大值(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象向左平移个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,则下列说法中正确的是( )

A.的最大值为B.是奇函数

C.的图象关于点对称D.上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:

随机变量经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”

C. 有97.5%以上的把握认为“爱好该项运动与性别有关”

D. 有97.5%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项的和记为Sn.如果a4=-12a8=-4

(1)求数列{an}的通项公式;

(2)Sn的最小值及其相应的n的值;

(3)从数列{an}中依次取出a1a2a4a8,构成一个新的数列{bn},求{bn}的前n项和

查看答案和解析>>

同步练习册答案