精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,则函数 满足( )
A.最小正周期为
B.图象关于点 对称
C.在区间 上为减函数
D.图象关于直线 对称

【答案】D
【解析】∵函数fx)=cosx+ sinx= cosx sinxsinx= sin2x

= sin2x+cos2x)﹣ = sin2x+ +

故它的最小正周期为 ,故A不正确;

x= ,求得f(x)= + = ,为函数f(x)的最大值,故函数f(x)的图象关于直线x= 对称,

且f(x)的图象不关于点( )对称,故B不正确、D正确;

在区间(0, )上,2x+ ∈( ),f(x)= sin(2x+ )+ 为增函数,故C不正确,

故答案为::D.

先用恒等变换将函数式化为一个角的一种三角函数的形式,再求周期、单调性和对称性。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是(
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β是平面,m,n是直线.下列命题中不正确的是 ( )
A.若m∥n,m⊥α,则n⊥α
B.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥β
D.若m⊥α, ,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(Ⅰ)当 时,讨论 的单调性;
(Ⅱ)设 ,若 恒成立,求 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的 城市和交通拥堵严重的 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):

合计

认可

不认可

合计

(Ⅰ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关;
(Ⅱ)若从此样本中的 城市和 城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自 城市的概率是多少?
附:参考数据:(参考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l过点 .
(1)若直线l与曲线C交于A,B两点,求 的值;
(2)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成 列联表,并判断能否有 的把握认为孩子的幸福感强与是否是留守儿童有关?

(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式: ; 附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常量,且的图象经过点

)求的值.

)当时,函数的图像恒在函数图像的上方,求实数的取值范围.

)定义在上的一个函数,如果存在一个常数,使得式子对一切大于的自然数都成立,则称函数上的函数(其中,.试判断函数是否为上的函数.若是,则求出的最小值;若不是,则请说明理由.(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品中,有一级品100,二级品60,三级品40,分别用系统抽样和分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程,并说明采用哪种抽样方法更能反映总体水平.

查看答案和解析>>

同步练习册答案