【题目】已知函数 ,则函数 满足( )
A.最小正周期为
B.图象关于点 对称
C.在区间 上为减函数
D.图象关于直线 对称
科目:高中数学 来源: 题型:
【题目】函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是( )
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知α,β是平面,m,n是直线.下列命题中不正确的是 ( )
A.若m∥n,m⊥α,则n⊥α
B.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥β
D.若m⊥α, ,则α⊥β
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的 城市和交通拥堵严重的 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):
合计 | |||
认可 | |||
不认可 | |||
合计 |
(Ⅰ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关;
(Ⅱ)若从此样本中的 城市和 城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自 城市的概率是多少?
附:参考数据:(参考公式: )
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l过点 .
(1)若直线l与曲线C交于A,B两点,求 的值;
(2)求曲线C的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).
(Ⅰ)根据茎叶图中的数据完成 列联表,并判断能否有 的把握认为孩子的幸福感强与是否是留守儿童有关?
(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式: ; 附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中,为常量,且,的图象经过点,.
()求,的值.
()当时,函数的图像恒在函数图像的上方,求实数的取值范围.
()定义在上的一个函数,如果存在一个常数,使得式子对一切大于的自然数都成立,则称函数为“上的函数”(其中,.试判断函数是否为“上的函数”.若是,则求出的最小值;若不是,则请说明理由.(注:).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样和分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程,并说明采用哪种抽样方法更能反映总体水平.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com