精英家教网 > 高中数学 > 题目详情
7.若{an}为等差数列,Sn是其前n项和,且S11=$\frac{22π}{3}$,{bn}为等比数列,b5•b7=$\frac{π^2}{4}$,则tan(a6+b6)的值为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

分析 利用等差数列的和求出a6,等比数列的性质求出b6,然后求解即可.

解答 解:{an}为等差数列,Sn是其前n项和,且S11=$\frac{22π}{3}$,S11=11a6,∴a6=$\frac{2π}{3}$,
{bn}为等比数列,b5•b7=$\frac{π^2}{4}$,则b6=±$\frac{π}{2}$.
tan(a6+b6)=tan($\frac{2π}{3}$+$\frac{π}{2}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
或tan(a6+b6)=tan($\frac{2π}{3}$-$\frac{π}{2}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
故选:C.

点评 本题考查数列求和,三角函数的化简求值,等差数列与等比数列的综合应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=1,(n+1)an=(n-1)an-1,(n≥2,n∈N*).
(I)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn.证明:Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设递增的等差数列{an}中,a3+a5=8,a2•a6=12.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+2}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2016年1月6日北京时间上午11时30分,朝鲜中央电视台宣布“成功进行了氢弹试验”,再次震动世界,朝鲜声明氢弹试验对周边生态环境未产生任何负面影响,未提及试验地点.中国外交部发表措辞严厉的声明对朝鲜核试验“坚决反对”,朝鲜“氢弹试验”事件引起了我国公民热议,其中丹东市(丹东市和朝鲜隔江)某QQ聊天群有300名网友,新疆乌鲁木齐某微信群有200名微信好友,为了解不同地区我国公民对“氢弹试验”事件的关注程度,现采用分层抽样的方法,从中抽取了100名好友,先分别统计了他们在某时段发表的信息条数,再将两地网友留言信息条数分成5组:[40,50),[50,60),[60,70),[70,80),[80,90),分别加以统计,得到如图所示的频率分布直方图.

(1)求丹东市网友的平均留言条数(保留整数);
(2)为了进一步开展调查,从样本中留言条数不足50条的网友中随机抽取2人,求至少抽到一名乌鲁木齐市网友的概率;
(3)规定“留言条数”不少于70条为“强烈关注”.
①请你根据已知条件完成下列2×2的列联表;
强烈关注非强烈关注合计
丹东市154560
乌鲁木齐市152540
合计3070100
②判断是否有90%的把握认为“强烈关注”与网友所在的地区有关?
附:临界值表及参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=q(q≠0),对任意m、p∈N*都有am+p=am•ap.从数列{an}中取出部分项,并将它们按原来顺序组成一个数列,称之为数列{an}的一个子数列.
(Ⅰ)求a4
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:当q>0且q≠1时,数列{an}不存在无穷等差子数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-5x+6≤0},B={x∈Z|2x>1},则A∩B=(  )
A.[2,3]B.(0,+∞)C.(0,2)∪(3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=sin(2x+φ)(-π<φ<0)为偶函数,则函数f(x)在区间$[0,\frac{π}{4}]$上的取值范围是(  )
A.[-1,0]B.$[-\frac{{\sqrt{2}}}{2},0]$C.$[0,\frac{{\sqrt{2}}}{2}]$D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)的定义域为D,记f(X)={y|y=f(x),x∈X⊆D},f-1(Y)={x|f(x)∈Y,x∈D},若f(x)=2sin(ωx+$\frac{5π}{6}$)(ω>0),D=[0,π],且f(f-1([0,2])=[0,2],则ω的取值范围是[$\frac{5}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某个容量为100的样本,频率分布直方图如图所示:

(1)求出b的值;
(2)根据频率分布直方图分别估计样本的众数与平均数.

查看答案和解析>>

同步练习册答案