【题目】随着人们经济收入的不断增加,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如表的数据资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
总费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求线性回归方程
;
(2)估计使用年限为12年时,使用该款车的总费用是多少万元?
线性回归方程
中斜率和截距用最小二乘法估计计算公式如下:
,![]()
科目:高中数学 来源: 题型:
【题目】《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为
和
的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为
,宽为内接正方形的边长
.由刘徽构造的图形还可以得到许多重要的结论,如图3.设
为斜边
的中点,作直角三角形
的内接正方形对角线
,过点
作
于点
,则下列推理正确的是( )
![]()
①由图1和图2面积相等得
;
②由
可得
;
③由
可得
;
④由
可得
.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
,
,
三班共有140名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时)
| 6.5 | 7 | 7.5 | |||
| 7 | 8 | 9 | 10 | 11 | |
| 4.5 | 6 | 7.5 | 9 | 10.5 | 12 |
(1)试估计
班的学生人数;
(2)从
班和
班抽出的人数中,各随机选取一人,
班选出的人记为甲,
班选出的人记为乙,假设所有学生锻炼时间互不影,求该周甲锻炼时间比乙的锻炼时间长的概率;
(3)再从
,
,
三班中各随机抽取一名学生,设新抽取的学生该周锻炼时间分别为7,9,8.25(单位:小时),这3个新数据与表格构成的新样本的平均数记为
,表格中数据的平均数记为
,试判断
和
的大小(结论不需要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为椭圆
的左右焦点,点
在椭圆上,且
.
(1)求椭圆
的方程;
(2)过
的直线
分别交椭圆
于
和
,且
,问是否存在常数
,使得
等差数列?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数
的图象,只要将函数
的图象( )
A.每一点的横坐标变为原来的
倍(纵坐标不变),再将所得图象向左平移
个长度
B.每一点的横坐标变为原来的
倍(纵坐标不变),再将所得图象向左平移
个长度
C.向左平移
个长度,再将所得图象每一点的横坐标变为原来的
倍(纵坐标不变)
D.向左平移
个长度,再将所得图象每一点的横坐标变为原来的
倍(纵坐标不变)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
(
,且
)是定义域为R的奇函数.
(1)求t的值;
(2)若
,求使不等式
对一切
恒成立的实数k的取值范围;
(3)若函数
的图象过点
,是否存在正数m(
),使函数
在
上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为
元.(
)
(1)写出该专营店一年内销售这种纪念章所获利润
(元)与每枚纪念章的销售价格
(元)的函数关系式(并写出这个函数的定义域);
(2)当每枚纪念章销售价格
为多少元时,该特许专营店一年内利润
(元)最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com