精英家教网 > 高中数学 > 题目详情
18.已知抛物线y2=12x上一点M到焦点的距离为8,则点M的横坐标为(  )
A.2B.3C.4D.5

分析 根据抛物线点到焦点的距离等于点到准线的距离,可得所求点的横坐标.

解答 解:抛物线y2=12x的准线方程为x=-3,
∵抛物线y2=12x上点到焦点的距离等于8,
∴根据抛物线点到焦点的距离等于点到准线的距离,
∴可得所求点的横坐标为5.
故选D.

点评 本题给出抛物线上一点到焦点的距离,要求该点的横坐标,着重考查了抛物线的标准方程与简单性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知角α满足条件sin2α<0,sinα-cosα<0,则α在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点,当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为($\frac{2\sqrt{3}}{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C1:x2+y2+2x+8y-8=0与直线x+2y-1=0相交于两点A,B两点,则弦长|AB|=(  )
A.10B.$\sqrt{5}$C.2$\sqrt{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线的两条渐近线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D,若D到直线BC的距离小于2(a+$\sqrt{{a}^{2}+{b}^{2}}$),则该双曲线的离心率的取值范围是(  )
A.(1,2)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,2)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式x2-4x+3<0的解集为(  )
A.(1,3)B.(-3,-1)C.(-∞,-3)∪(-1,+∞)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面直角坐标系xOy中,双曲线C1:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的渐近线与抛物线C2:x2=2px(p>0)交于点O,A,B.若△OAB的垂心为抛物线C2的焦点,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=3x+2x-3的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

同步练习册答案