精英家教网 > 高中数学 > 题目详情

【题目】某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低万元与技术改造投入万元之间满足:①的乘积成正比;②当时, ,并且技术改造投入比率 为常数且

1)求的解析式及其定义域;

2)求的最大值及相应的值.

【答案】1定义域是2见解析

【解析】试题分析:(1)先求比例系数,再比率范围得定义域(2)先求导数,再求定义区间上导函数零点,列表分析导函数符号变化规律,确定单调性,进而确定最大值

试题解析:(1)设

时, ,即,解得

所以

因为,所以函数的定义域是

(2)因为),

所以,令,则(舍去)或

时, ,所以上是增函数,

时, ,所以上是减函数,

所以为函数的极大值点,

,即

,即时,

综上可得,当时, 的最大值为 的值为20;

时, 的最大值为 的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线平行OM,且与椭圆交于A、B两个不同的点。

(Ⅰ)求椭圆方程;

()AOB为钝角,求直线轴上的截距的取值范围;

()求证直线MA、MB轴围成的三角形总是等腰三角形。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
①f(x)的最大值为3;
②将f(x)的图象向左平移 后所得的函数是偶函数;
③f(x)在区间[﹣ ]上单调递增;
④f(x)的图象关于直线x= 对称.
其中正确说法的序号是(
A.②③
B.①④
C.①②④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A、B、C的对边分别是a、b、c,其面积S=a2﹣(b﹣c)2 . 若a=2,则BC边上的中线长的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在坐标轴上,焦距长为2,左准线为

1)求椭圆的方程及其离心率;

2)若过点的直线交椭圆 两点,且为线段的中点,求直线的方程;

3)过椭圆右准线上任一点引圆 的两条切线,切点分别为 .试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对顾客实行购物优惠活动,规定一次购物付款总额:

(1)如果不超过200元,则不给予优惠;

(2)如果超过200元但不超过500元,则按标价给予9折优惠;

(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.

某人单独购买AB商品分别付款168元和423元,假设他一次性购买AB两件商品,则应付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+mlog2(x+ )(m∈R,m>0),则不等式f(m)+f(m2﹣2)≥0的解是 . (注:填写m的取值范围)

查看答案和解析>>

同步练习册答案