精英家教网 > 高中数学 > 题目详情
某旅游景点2012年的利润为100万元,因市场竞争,若不开发新项目,预测从2013年起每年利润比上一年减少4万元,2013年初,该景点一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第n年(n为正整数,2013年为第1年)的利润为100(1+
1
3n
)万元.
(1)设从2013年起的前n年,该景点不开发新项目的累计利润为An万元,开发新项目的累计利润为Bn万元(须扣除开发所投入的资金),求An,Bn的表达式;
(2)依上述预测,该景点从第几年开始,开发新项目的累计利润超过不开发新项目的累计利润?
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用,等差数列与等比数列
分析:(1)分别列出该景点不开发新项目与开发新项目的每年利润,从而求利润总和即可;
(2)解Bn-An=100n-
50
3n
-40-(100n-2n(n+1))=2n(n+1)-
50
3n
-40>0即可.
解答: 解:(1)该景点不开发新项目,从2013年起的前n年,
当n=1时,当年的利润为100-4万元,
当n=2时,当年的利润为100-8万元,
当n=3时,当年的利润为100-12万元,

故前n年的总利润An=100-4+100-8+…+100-4n=100n-2n(n+1);
开发新项目,从2013年起的前n年,
当n=1时,当年的利润为100(1+
1
3
)万元,
当n=2时,当年的利润为100(1+
1
9
)万元,
当n=3时,当年的利润为100(1+
1
27
)万元,

故前n年的总利润Bn=100(1+
1
3
)+100(1+
1
9
)+100(1+
1
27
)+…+100(1+
1
3n
)-90=100n-
50
3n
-40;
故An=100n-2n(n+1);
Bn=100n-
50
3n
-40;
(2)令Bn-An=100n-
50
3n
-40-(100n-2n(n+1))
=2n(n+1)-
50
3n
-40>0,
n=4时,Bn-An<0,当n=5时,Bn-An>0;
故该景点从第5年开始,开发新项目的累计利润超过不开发新项目的累计利润.
点评:本题考查了函数在实际问题中的应用及数列在实际问题中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:(lg5)2+lg2•lg50-log 
1
2
8+log3
427
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b是实数,求证:
a2+b2
2
2
(a+b).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|x2-2x-3>0},N={x|ax2+x+b≥0,a≠0},若∁UM=N,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,求证:
2ab
a+b
ab
a+b
2
a2+b2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-3=0的距离为2
2
,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)当点P在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是首项为4,公差为1的等差数列;Sn为数列{bn}的前n项和,且Sn=n2+2n.
(1)求{an}及{bn}的通项公式an和bn
(2)f(n)=
an,n为正奇数
bn,n为正偶数
问是否存在k∈N+使f(k+27)=4f(k)成立?若存在,求出k的值;若不存在,说明理由;
(3)若对任意的正整数n,不等式 
a
(1+
1
b1
)(1+
1
b2
)(1+
1
bn
)
-
1
n-1+an+1
≤0恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(4-3x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a,b,c分别是三内角A,B,C的对边,若f(B)=sin2
B
2
+sin
B
2
cos
B
2
+2cos2
B
2
-
3
2

(1)求f(B)的最大值;
(2)当f(B)取得最大值时,求
a
bsin(
π
4
+C)
+
2sin2A+2sin2C-1
2
sinAsinC
的值.

查看答案和解析>>

同步练习册答案