分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)根据函数的单调性求出f(x)的最大值即可.
解答 解:(1)f(x)的定义域是(0,+∞),
f′(x)=$\frac{1-(lnx+1)}{{x}^{2}}$=-$\frac{lnx}{{x}^{2}}$,
令f′(x)>0,解得:0<x<1,
令f′(x)<0,解得:x>1,
∴f(x)在(0,1)递增,在(1,+∞)递减,
∴f(x)极大值=f(1)=0,无极小值;
(2)由(1)得:f(x)在(0,1)递增,在(1,e]递减,
∴f(x)最大值=f(x)极大值=f(1)=0.
点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5+2$\sqrt{5}$ | B. | -5-2$\sqrt{5}$ | C. | -2+2$\sqrt{5}$ | D. | 5-2$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32}{9}$ | B. | $\frac{16}{9}$ | C. | $\frac{8}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值为2 | B. | 周期为π的奇函数 | ||
| C. | 关于点$(\frac{π}{8},0)$中心对称 | D. | 在$[\frac{3π}{8},\frac{7π}{8}]$上单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com