精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=|2x-2|-m有两个不同的零点,则实数m的取值范围是(0,2).

分析 把函数f(x)=|2x-2|-m的零点转化为函数y=|2x-2|与y=m的图象交点的横坐标,画出两个函数的图象,数形结合得答案.

解答 解:由f(x)=|2x-2|-m=0,得|2x-2|=m,
画出函数y=|2x-2|与y=m的图象如图,

由图可知,要使函数f(x)=|2x-2|-m有两个不同的零点,则实数m的取值范围是(0,2).
故答案为:(0,2).

点评 本题考查函数的零点判定定理,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}$,则目标函数z=$\frac{y+2}{x}$的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\{x^2}+2{y^2}≤1\end{array}\right.$,则z=4x-y的最小值为$-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题p:有一个素数含有三个正因数,则¬p为每一个素数都不含三个正因数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.国家为了鼓励节约用水,实行阶梯用水收费制度,价格参照表如表:
用水量(吨)单价(元/吨)
0~20(含)2.5
20~35(含)3超过20吨不超过35吨的部分按3元/吨收费
35以上4超过35吨的部分按4元/吨收费
(Ⅰ)若小明家10月份用水量为30吨,则应缴多少水费?
(Ⅱ)若小明家10月份缴水费99元,则小明家10月份用水多少吨?
(Ⅲ)写出水费y与用水量x之间的函数关系式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{{x}^{2}+9}$,g(x)=ax-3.
(1)当a=l时,确定函数h(x)=f(x)-g(x)在(0,+∞)上的单调性;
(2)若对任意x∈[0,4],总存在x0∈[-2,2],使得g(x0)=f(x)成立,求 实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x≤1}\\{-ax+3a-4,x>1}\end{array}\right.$在R上单调递减,则实数a的取值范围是(  )
A.[0,2]B.[0,1]C.[0,+∞)D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.行列式$|\begin{array}{l}{{2}^{x}}&{7}&{4{\;}^{x}}\\{4}&{-3}&{4}\\{6}&{5}&{-1}\end{array}|$中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|(x-a)[x-(a+3)]≤0}(a∈R),B={x|x2-4x-5>0}.
( 1 ) 若A∩B=∅,求实数a的取值范围;
( 2 ) 若A∪B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案