精英家教网 > 高中数学 > 题目详情
20.行列式$|\begin{array}{l}{{2}^{x}}&{7}&{4{\;}^{x}}\\{4}&{-3}&{4}\\{6}&{5}&{-1}\end{array}|$中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是-1.

分析 将行列式按第3行第2列展开,由f(x)=A32=-$|\begin{array}{l}{{2}^{x}}&{{4}^{x}}\\{4}&{4}\end{array}|$=-(4×2x+4×4x)=-2x+2(1+2x),令y=1+f(x)=1-2x+2(1+2x)=0,解得:x=-1,即可求得y=1+f(x)的零点.

解答 解:第3行第2列的元素的代数余子式A32=-$|\begin{array}{l}{{2}^{x}}&{{4}^{x}}\\{4}&{4}\end{array}|$=-4×2x+4×4x=-2x+2(1+2x),
∴f(x)=-2x+2(1+2x),
y=1+f(x)=1-2x+2(1+2x),
令y=0,即2x+2(1+2x)=1,
解得:x=-1,
故答案为:-1.

点评 本题考查三阶行列式的余子式的定义,考查函数的零点的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3-x2+2x,则(  )
A.函数f(x)无极值点B.x=1为f(x)的极小值点
C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=|2x-2|-m有两个不同的零点,则实数m的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2α,α∈A},则集合∁U(A∪B)=(  )
A.{2,4}B.{1,3,5}C.{1,2,4}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$);
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且θ∈(0,π),求θ;
(2)若|3$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-3$\overrightarrow{b}$|,求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=2${\;}^{-\frac{1}{2}}$,b=log2$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.本来住校的小明近期“被”走读,某天中午上学路上,一开始慢悠悠,中途又进甜品店买了杯饮料,喝完饮料出来发现快要迟到了,于是一路狂奔,还好,终于在规定的时间内进了校门,奈何汗湿了衣裳.那么问题来了:若图中的纵轴表示小明与校门口的距离,横轴表示出发后的时间,下面四个图形中,较符合小明这次上学经历的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图所示,如图为一个四棱锥的三视图,则该四棱锥所有的侧棱中最长的为$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中正确的有(  )
①命题?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“对?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要条件;
③若曲线C上的所有点的坐标都满足方程f(x,y)=0,则称方程f(x,y)=0是曲线C的方程;
④十进制数66化为二进制数是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

同步练习册答案