分析 (1)由题意可得a+b+c=$\sqrt{2}$+1,再由由正弦定理可得a+b=$\sqrt{2}$c,整体解得c值即可;
(2)由a=ccosB和正弦定理以及和差角的三角函数可得C=$\frac{π}{2}$,再由b=csinA和正弦定理可得A=B,可得等腰直角三角形.
解答 解:(1)∵△ABC的周长a+b+c=$\sqrt{2}$+1,
又∵sinA+sinB=$\sqrt{2}$sinC,
∴由正弦定理可得a+b=$\sqrt{2}$c,
∴$\sqrt{2}$c+c=$\sqrt{2}$+1,
解得AB=c=1;
(2)∵a=ccosB,且b=csinA,
∴由正弦定理可得sinA=sinCcosB,
∴sin(B+C)=sinCcosB,
∴sinBcosC+cosBsinC=sinCcosB,
∴sinBcosC=0,
由三角形内角范围只能cosC=0,C=$\frac{π}{2}$,
再由b=csinA可得sinB=sinCsinA,
∴sinB=sinA,A=B,
∴△ABC为等腰直角三角形.
点评 本题考查三角形形状的判定,涉及正余弦定理以及和差角的三角函数,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | $\frac{9}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}+1$ | B. | $\sqrt{3}+1$ | C. | $\sqrt{2}-1$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a⊥b,b⊥c,则a⊥c | B. | 若a∥α,b∥α,则a∥b | C. | 若a∥α,b⊥α,则b∥α | D. | 若a⊥α,α∥β,则a⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com