【题目】设Sn是数列{an}的前n项和,且a1=1,an+1=﹣SnSn+1 , 则使 取得最大值时n的值为明 .
科目:高中数学 来源: 题型:
【题目】锐角△ABC中,其内角A,B满足:2cosA=sinB﹣ cosB.
(1)求角C的大小;
(2)D为AB的中点,CD=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四棱锥中,底面ABCD是平行四边形,平面ABCD,垂足为G,G在AD上,且,,,,E是BC的中点.
求异面直线GE与PC所成的角的余弦值;
求点D到平面PBG的距离;
若F点是棱PC上一点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥V﹣ABCD中(底面是正方形,侧棱均相等),AB=2,VA= ,且该四棱锥可绕着AB任意旋转,旋转过程中CD∥平面α,则正四棱锥V﹣ABCD在平面α内的正投影的面积的取值范围是( )
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函数f(x)=1﹣ .
(1)若x∈[0, ],求函数f(x)的值域;
(2)当x∈[0,π]时,求f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程是ρ=2,矩形ABCD内接于曲线C1 , A,B两点的极坐标分别为(2, )和(2, ),将曲线C1上所有点的横坐标不变,纵坐标缩短为原来的一半,得到曲线C2 .
(1)写出C,D的直角坐标及曲线C2的参数方程;
(2)设M为C2上任意一点,求|MA|2+|MB|2+|MC|2+|MD|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣2sin2x+2 sinxcosx+1.
(1)求f(x)的最小正周期及对称中心;
(2)若x∈[﹣ , ],求f(x)的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com