精英家教网 > 高中数学 > 题目详情

【题目】设Sn是数列{an}的前n项和,且a1=1,an+1=﹣SnSn+1 , 则使 取得最大值时n的值为明

【答案】3
【解析】解:∵a1=1,an+1=﹣SnSn+1
∴Sn+1﹣Sn=﹣SnSn+1 , ∴ =1,
∴数列 是等差数列,首项为1,公差为1.
=1+(n﹣1)=n.
∴Sn=
= = = =g(n),
考查函数f(x)= 的单调性,x>0,
可知:函数f(x)在 上单调递减,在 上单调递增.
又g(3)= ,g(4)= ,∴g(3)>g(4).
∴使 取得最大值时n的值为3.
所以答案是:3.
【考点精析】本题主要考查了数列的通项公式的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若x+y-1=0(x>0,y>0),则的取值范围是(  )

A. (0,+∞) B. (,2) C. [,2] D. (,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,其内角A,B满足:2cosA=sinB﹣ cosB.
(1)求角C的大小;
(2)D为AB的中点,CD=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥中,底面ABCD是平行四边形,平面ABCD,垂足为GGAD上,且EBC的中点.

求异面直线GEPC所成的角的余弦值;

求点D到平面PBG的距离;

F点是棱PC上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥V﹣ABCD中(底面是正方形,侧棱均相等),AB=2,VA= ,且该四棱锥可绕着AB任意旋转,旋转过程中CD∥平面α,则正四棱锥V﹣ABCD在平面α内的正投影的面积的取值范围是(
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函数f(x)=1﹣
(1)若x∈[0, ],求函数f(x)的值域;
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程是ρ=2,矩形ABCD内接于曲线C1 , A,B两点的极坐标分别为(2, )和(2, ),将曲线C1上所有点的横坐标不变,纵坐标缩短为原来的一半,得到曲线C2
(1)写出C,D的直角坐标及曲线C2的参数方程;
(2)设M为C2上任意一点,求|MA|2+|MB|2+|MC|2+|MD|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣2sin2x+2 sinxcosx+1.
(1)求f(x)的最小正周期及对称中心;
(2)若x∈[﹣ ],求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案