精英家教网 > 高中数学 > 题目详情
求数集{a,a2-a}中实数a的取值范围.
考点:集合的确定性、互异性、无序性,元素与集合关系的判断
专题:集合
分析:根据元素的互异性即可得到结论.
解答: 解:根据集合元素的互异性可知:a2-a≠a,即a2≠2a,
∴a≠0且a≠2,
故实数a的取值范围是{a|a≠0且a≠2}.
点评:本题主要考查集合元素的性质,利用集合元素的互异性是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用logax、logay、logaa表示下列各式:
(1)loga
x2
yz3

(2)loga
x
y2z

(3)loga(x2yz3).

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的公差为d,且a1,d∈N*.若设M1是从a1开始的前t1项数列的和,即M1=a1+…+a t 1(1≤t1,t1∈N*),M2=at1+1+at1+2+…+at2(1<t2∈N*),如此下去,其中数列{Mi}是从第ti-1+1(t0=0)开始到第ti(1<ti)项为止的数列的和,即Mi=ati-1+1+…+ati(1≤ti,ti∈N*).
(1)若数列an=n(1≤n≤13,n∈N*),试找出一组满足条件的M1,M2,M3,使得:M22=M1M3
(2)试证明对于数列an=n(n∈N*),一定可通过适当的划分,使所得的数列{Mn}中的各数都为平方数;
(3)若等差数列{an}中a1=1,d=2.试探索该数列中是否存在无穷整数数列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}为等比数列,如存在,就求出数列{Mn};如不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
π
2
x
)+1,求f(1)+f(2)+f(3)+…f(2011)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是边长为2的正三角形,四边形ABCD为菱形,且∠DAB=60°,PC=
10

(1)求PC与面ABCD所成角的正弦值;
(2)求二面角P-BC-A的平面角的大小;
(3)平面PBC与平面PAD交于直线l,画出直线l,并判断直线l与直线BC的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=kx+2(k≠0)在1≤x<3时的最小值为5,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2(x+
π
4
)-sin2(x-
π
4
)是以
 
为周期的
 
函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=loga|x|在(0,1)上有f(x)>0,则x•f(x)<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

P是双曲线
x2
a2
-
y2
b2
=1(a>,b>0)
右支上一点,F1与F2是左右焦点,O为原点,则t=
PF1+PF2
OP
的取值范围是
 

查看答案和解析>>

同步练习册答案