精英家教网 > 高中数学 > 题目详情
17.函数f(x)=x2-2x+a在区间(1,3)内有一个零点,则实数a的取值范围是(  )
A.(-3,0)B.(-3,1)C.(-1,3)D.(-1,1)

分析 由题意知,函数f(x)在区间(1,3)内有一个零点,它的对称轴为x=1,得出不等式组,解出即可.

解答 解:∵令f(x)=x2-2x+a,它的对称轴为x=1,
∴函数f(x)在区间(1,3)单调递增,
∵方程x2-2x+a=0在区间(1,3)内有一个零点,
∴函数f(x)在区间(1,3)内与x轴有一个交点,
根据零点存在性定理得出:$\left\{\begin{array}{l}{f(1)<0}\\{f(3)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{1-2+a<0}\\{9-6+a>0}\end{array}\right.$
解得:-3<a<1,
故选:B.

点评 此题主要考查函数的零点以及二次函数的性质问题,是一道基础题,容易得出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,点(2,$\frac{π}{3}$)到圆ρ=-2cosθ的圆心的距离为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={-1,2},B={0,1},则集合{z|z=x+y,x∈A,y∈B}的子集共有(  )
A.2个B.4个C.8个D.16个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}为等差数列,若a12+a102≤25恒成立,则a1+3a7的取值范围为(  )
A.[-5,5]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-10,10]D.[-10$\sqrt{2}$,10$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等腰三角形ABC中,∠A=150°,AC=AB=1,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.$-\frac{{\sqrt{3}}}{2}-1$B.$-\frac{{\sqrt{3}}}{2}+1$C.$\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,过椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左右焦点F1,F2分别作直线l1,l2交椭圆于A,B与C,D,且l1∥l2
(1)求证:当直线l1的斜率k1与直线BC的斜率k2都存在时,k1k2为定值;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设复数z=a+bi(a,b∈R,a>0,i是虚数单位),且复数z满足|z|=$\sqrt{10}$,复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数z;
(2)若$\overline{z}$+$\frac{m-i}{1+i}$为纯虚数(其中m∈R),求实数m的值.

查看答案和解析>>

同步练习册答案