精英家教网 > 高中数学 > 题目详情
5.已知数列{an}为等差数列,若a12+a102≤25恒成立,则a1+3a7的取值范围为(  )
A.[-5,5]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-10,10]D.[-10$\sqrt{2}$,10$\sqrt{2}$]

分析 利用等差数列的性质令a1=5cosθ,a10=5sinθ(0<θ<$\frac{π}{2}$),则d=$\frac{5}{9}$(sinθ-cosθ),问题转化为三角函数在定区间上求最值问题解决即可.

解答 解:由题意得,令a1=5cosθ,a10=5sinθ(0<θ<$\frac{π}{2}$),则d=$\frac{5}{9}$(sinθ-cosθ),
∴a1+3a7=10(sinθ+cosθ)=10$\sqrt{2}$sin(θ+$\frac{π}{4}$),
∴a1+3a7的取值范围为[-10$\sqrt{2}$,10$\sqrt{2}$],
故选:D.

点评 本题主要考查了等差数列的性质,借助三角函数,通过等价转化思想达到解决问题的目的,要体会这种换元法的解题思路,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+lnx+$\frac{a}{x}$,a∈R.
(1)设曲线y=f(x)在x=1处的切线与直线y=ex-1平行,求此切线方程;
(2)当a=0时,令函数g(x)=f(x)-$\frac{1}{2b}$x2-ex(b∈R,b≠0),求函数g(x)在定义域内的极值点;
(3)令h(x)=f(x)-ex,?x1,x2∈[1,+∞),且x1<x2,都有h(x1)-h(x2)<x2-x1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥D-ABCM中,AD=DM,且AD⊥DM,底面四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.
(Ⅰ)求证:AD⊥BD
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,四棱锥M-ADE的体积为$\frac{4\sqrt{2}}{9}$?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.随机调查某社区80个人,以研究这一社区居民在17:00-21:00时间段的休闲方式是否与性别有关,得到下面的数据表:
休闲方式
性别
看电视看书合计
201030
45550
合计651580
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为在17:00-21:00时间段的休闲方式与性别有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x-x3,x∈R.
(1)求f'(x)在[-2,3]上的最大值和最小值;
(2)设曲线y=f(x)与x轴正半轴的交点为P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了n人,得到如下的统计表和频率分布直方图.
(Ⅰ)写出其中的a、b、n及x和y的值;
(Ⅱ)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,用X表示其中是第3组的人数,求X的分布列和期望.
组号分组喜爱人数喜爱人数占本组的频率
第1组[15,25)a0.10
第2组[25,35)b0.20
第3组[35,45)60.40
第4组[45,55)120.60
第5组[55,65)200.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x2-2x+a在区间(1,3)内有一个零点,则实数a的取值范围是(  )
A.(-3,0)B.(-3,1)C.(-1,3)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?”已知一斛米的体积约为1.62立方尺,由此估算出堆放的米约有(  )
A.21斛B.34斛C.55斛D.63斛

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,设向量$\overrightarrow{m}$=(a,c),$\overrightarrow{n}$=(cosC,cosA).
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,a=$\sqrt{3}$c,求角A;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=3bsinB,cosA=$\frac{3}{5}$,求cosC的值.

查看答案和解析>>

同步练习册答案