精英家教网 > 高中数学 > 题目详情
19.已知等差数列{an}的前n项和为Sn,若a3+a5+a7=24,则S9=(  )
A.36B.72C.C144D.288

分析 根据{an}是等差数列,a3+a5+a7=24,可得3a5=24,即a5=8.S9=$\frac{{a}_{1}+{a}_{9}}{2}×9$=$\frac{2{a}_{5}}{2}×9$可得答案.

解答 解:由题意,{an}是等差数列,a3+a5+a7=24,可得3a5=24,即a5=8.
∵S9=$\frac{{a}_{1}+{a}_{9}}{2}×9$,而a5+a5=a1+a9
∴S9═$\frac{2{a}_{5}}{2}×9$=72,
故选:B.

点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数fn(x)=a1x+a2x2+a3x3+…+anxn,且fn(-1)=(-1)nn,n∈N*,设函数g(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{g(\frac{n}{2}),n为偶数}\end{array}\right.$,若bn=g(2n+4),n∈N*,则数列{bn}的前n(n≥2)项和Sn等于$\left\{\begin{array}{l}{6,n=2}\\{{2}^{n}+n,n≥3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,则|$\overrightarrow{b}$-2$\overrightarrow{a}$|=(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{-3x,x<0}\end{array}\right.$,若a[f(a)-f(-a)]>0,则实数a的取值范围为(  )
A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f ( x )=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+2sin x cos x.
(Ⅰ)求函数 f ( x) 图象的对称轴方程;
(Ⅱ)将函数 y=f ( x) 的图象向右平移 $\frac{π}{12}$个单位,再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数 y=g ( x) 的图象,求 y=g ( x) 在[$\frac{π}{3}$,2π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.随着人口老龄化的到来,我国的劳动力人口在不断减少,”延迟退休“已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄[20,25)[25,30)[30,35)[35,40)[40,45)
人数45853
年龄[45,50)[50,55)[55,60)[60,65)[65,70)
人数67354
经调查年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(Ⅰ)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;
(Ⅱ)若选中的4人中,不赞成“延迟退休”的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”,某校研究性学习小组对全校学生按“跟从别人闯红灯”,“从不闯红灯”、“带头闯红灯”等三种形式进行调查,获得下表数据:
  跟从别人闯红灯 从不闯红灯 带头闯红灯
 男生 980 410 60
 女生 340 15060
用分层抽样的方法从所有被调查的人中抽取一个容量为n的样本,其中在“跟从别人闯红灯”的人中抽取了66人.
(Ⅰ)求n的值;
(Ⅱ)在所抽取的“带头闯红灯”的人中,在选取2人参加星期天社区组织的“文明交通”宣传活动,求这2人中至少有一人是女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}$在区间(0,4)内任取一个为x,则不等式log2x-(log${\;}_{\frac{1}{4}}$4x-1)f(log3x+1)≤$\frac{7}{2}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},x∈[0,1]}\\{-\frac{\sqrt{5}}{5}f(x-1),x∈[1,3]}\end{array}\right.$
(Ⅰ)求f($\frac{5}{2}$)及x∈[2,3]时函数f(x)的解析式
(Ⅱ)若f(x)≤$\frac{k}{x}$对任意x∈(0,3]恒成立,求实数k的最小值.

查看答案和解析>>

同步练习册答案