精英家教网 > 高中数学 > 题目详情
下列四个命题:
①两个相交平面有不在同一直线上的三个公交点
②经过空间任意三点有且只有一个平面
③过两平行直线有且只有一个平面
④在空间两两相交的三条直线必共面
其中正确命题的序号是
 
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:由公理3可判断①,由公理2及其推论,可判断②③,根据空间线线关系,可判断④
解答: 解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,
故正确命题的序号是③,
故答案为:③
点评:本题考查的知识点是平面的基本性质及推论,空间线线关系,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于给定的数列{cn},如果存在实常数p、q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“优美数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“优美数列”?若是,指出它对应的实常数p、q,若不是,请说明理由;
(2)已知数列{an}满足a1=2,an+an+1=3•2n(n∈N*).若数列{an}是“优美数列”,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“Л型函数”.则下列函数:①F(x)=
x
;②g(x)=2x;③h(x)=lnx,x∈[2,+∞),其中是“Л型函数”的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f(x)=x+
a
x
,g(x)=ex-1,若对任意的x1,x2∈(0,1],都有f(x1)≥g(x2)成立,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:
X -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
F(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89
则函数f(x)至少有
 
个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

π
2
-
π
2
(sin3x+cos2x)dx的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法的伪代码,则输出的k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指…一直数到2013时,对应的指头是
 
(填指头的名称).

查看答案和解析>>

同步练习册答案