精英家教网 > 高中数学 > 题目详情
已知数列{an}满足,a1=1,且
1
an+1
-
1
an
=2
(Ⅰ)求an的通项公式;
(Ⅱ)设{anan+1}的前n项和为Tn,若Tn=
49
99
,试求n的值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由a1=1,
1
an+1
-
1
an
=2
,知{
1
an
}
是以首项为1,公差等于2的等差数列,由此能求出an=
1
2n-1

(Ⅱ)a nan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,由此利用裂项求和法能求出n=49.
解答: 解:(Ⅰ)由a1=1,且
1
an+1
-
1
an
=2

{
1
an
}
是以首项为1,公差等于2的等差数列,
所以
1
an
=1+2(n-1)=2n-1

an=
1
2n-1
…(5分)
(Ⅱ)a nan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

所以Tn=a1a2+a2a3+…+anan+1
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)=
n
2n+1

Tn=
49
99
,即
n
2n+1
=
49
99
,解得n=49.…(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法及应用,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,对于?x∈R,不等式sinx+cosx>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若(4
AB
-
AC
)⊥
CB
,则sinA的最大值为(  )
A、
1
2
B、
3
5
C、
4
5
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若f′(x0)=A,则
lim
△x→0
f(x0-△x)-f(x0)
△x
等于(  )
A、A
B、-A
C、
1
2
A
D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,已知an=5Sn-3(n∈N*),求
lim
n→∞
(a1+a3+…+a2n-1+…)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
A、异面直线a,b不垂直,则不存在互相垂直的平面α,β分别过a,b
B、直线l不垂直平面α,则α内不存在与l垂直的直线
C、直线l与平面α平行,则过α内一点有且只有一条直线与l平行
D、平面α,β垂直,则过α内一点有无数条直线与β垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D,如果存在实数M,使对任意的x∈D,都有|f(x)|≤M,则称函数f(x)为有界函数,下列函数:
①f(x)=2-|x|,x∈R                          ②f(x)=ln|x|,x∈(0,+∞)
③f(x)=
x
x2+1
,x∈(-∞,0)∪(0,+∞)    ④f(x)=xsinx,x∈(0,+∞)
为有界函数的是(  )
A、②④B、②③④
C、①③D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

由下列条件求双曲线的标准方程:
(1)两焦点坐标为(-5,0),(5,0),双曲线上一点P与两焦点距离的差的绝对值为8;
(2)两焦点坐标为(0,-6),(0,6),且双曲线过点(-5,6).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>1,则函数y=
1
ax-1
的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案