精英家教网 > 高中数学 > 题目详情
若f′(x0)=A,则
lim
△x→0
f(x0-△x)-f(x0)
△x
等于(  )
A、A
B、-A
C、
1
2
A
D、以上都不是
考点:极限及其运算
专题:导数的概念及应用
分析:利用导数的定义即可得出.
解答: 解:∵f′(x0)=A,
lim
△x→0
f(x0-△x)-f(x0)
△x
=-
lim
△x→0
f(x0)-f(x0-△x)
△x
=-A.
故选:B.
点评:本题考查了导数的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的各项都是正数,其前n项和Sn满足2Sn=an+
1
an
,n∈N*,则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1且
an+1
an
=
n+1
n
,则a2012=(  )
A、2 010
B、2 011
C、2 012
D、2 013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α是第二象限角,其终边上一点P的坐标是(-
2
,y)
,且sinα=
2
4
y.
(1)求tanα的值;
(2)求
3sinα•cosα
4sin2α+2cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的顶点在原点,始边与x轴的正半轴重合,终边落在第三象限,与圆心在原点的单位圆交于点P(cosα,-
3
3
),则tanα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有大小、形状相同的黑、白球各一个,现在有放回地随机摸取3次,每次摸一个球,若摸到黑球得1分,摸到白球得2分,则3次摸球所得总分超过4分的概率为(  )
A、
1
2
B、
3
8
C、
5
8
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足,a1=1,且
1
an+1
-
1
an
=2
(Ⅰ)求an的通项公式;
(Ⅱ)设{anan+1}的前n项和为Tn,若Tn=
49
99
,试求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义域D上单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.
(1)函数h(x)=x2(x≤0)是否是正函数?若是,求h(x)的等域区间,若不是,请说明理由;
(2)已知f(x)=x
1
2
是[0,+∞)上的正函数,求f(x)的等域区间;
(3)试探究是否存在实数m,使得函数g(x)=x2+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
4
=1的焦点为(4,0),则此双曲线的渐近线方程是(  )
A、
2
x±y=0
B、x±
3
y=0
C、
3
x±y=0
D、x±
2
y=0

查看答案和解析>>

同步练习册答案