精英家教网 > 高中数学 > 题目详情
9.已知直线l经过点A(4,1),B(6,3),则直线l的倾斜角是(  )
A.B.30°C.45°D.60°

分析 根据直线过点A、B,求出它的斜率,由斜率得出对应的倾斜角.

解答 解:直线l经过点A(4,1),B(6,3),
∴直线l的斜率是k=$\frac{3-1}{6-4}$=1,
∴直线l的倾斜角是45°.
故选:C.

点评 本题考查了利用两点的坐标求直线的倾斜角与斜率的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对每个正整数n,点Pn位于函数y=3x+$\frac{13}{4}$的图象上,且Pn的横坐标构成以-$\frac{5}{2}$为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn且过点Dn(0,n2+1),记过点Dn且与抛物线Cn相切的直线
的斜率为kn,求证:$\frac{1}{k{{{\;}_{1}k}_{2}}_{\;}}$+$\frac{1}{{k}_{2}{k}_{3}}$+…+$\frac{1}{{{k}_{n-1}}_{\;}{k}_{n}}$<$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图(1),等腰梯形OABC的上、下底边长分别为1、3,底角为∠COA=60°.记该梯形内部位于直线x=t(t>0)左侧部分的面积为f(t).试求f(t)的解析式,并在如图(2)给出的坐标系中画出函数y=f(t)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A=[-1,2],B={x|1≤x≤4},则A∩B=(  )
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个正方体的棱长为m,表面积为n,一个球的半径为p,表面积为q,若$\frac{m}{p}$=2,则$\frac{n}{q}$=(  )
A.$\frac{8}{π}$B.$\frac{6}{π}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一座圆形拱桥,当水面在如图所示位置时,拱桥离水面2米,水面宽12米,当水面下降1米后水面宽为2$\sqrt{51}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,|$\overrightarrow{a}$|=2,$\overrightarrow{a}$=2$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$且$\overrightarrow c⊥\overrightarrow b$
(1)求向量$\overrightarrow a$与$\overrightarrow b$的夹角;
(2)求$|{3\overrightarrow a+\overrightarrow b}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设常数a>0,λ∈R,函数f(x)=x2(x-a)-λ(x+a)3
(1)若函数f(x)恰有两个零点,求λ的值;
(2)若g(λ)是函数f(x)的极大值点,求g(λ)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(-x,2),$\overrightarrow{b}$=(x,x-2),则$\overrightarrow{a}$•$\overrightarrow{b}$的最大值是-3.

查看答案和解析>>

同步练习册答案