精英家教网 > 高中数学 > 题目详情
若α∈(
π
2
,π),则2cos2α=sin(
π
4
-α),则sin2α的值为(  )
A、
1
8
B、-
7
8
C、1
D、
7
8
考点:二倍角的正弦
专题:计算题,三角函数的求值
分析:由条件利用两角和的正弦公式、二倍角公式求得,cosα-sinα,或 cosα+sinα的值,由此求得sin2α的值.
解答: 解:∵α∈(
π
2
,π),且2cos2α=sin(
π
4
-α),
∴2(cos2α-sin2α)=
2
2
(sinα-cosα),
∴cosα+sinα=-
2
4
,或 cosα-sinα=0(根据角的取值范围,此等式不成立排除).
∵cosα+sinα=-
2
4
,则有1+sin2α=
1
8
,sin2α=-
7
8

故选:B.
点评:本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变最x,y满足约束条件 
x+y-2≥0
x-y-2≤0
y≥1
,则目标函数z=x+2(y-l)的最小值为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,最小值为2的是(  )
A、y=x+
1
x
B、y=sinx+
1
sinx
,x∈(0,
π
2
C、y=2x+
1
2x
D、y=lgx+
1
lgx

查看答案和解析>>

科目:高中数学 来源: 题型:

复平面内,两点M、N所对应的非零复数是α,β(O是原点).
(1)若α22=0,则△OMN是
 
三角形.
(2)若2α2-2αβ+β2=0,则△OMN是
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
asinx+bx3
ccosx
+3
,若f(5)=-2,求f(-5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1、F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为 (  )
A、
3
B、2
C、
3
-1
D、1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

计算lg
2
+
1
2
lg5+(lg7)0
的结果为(  )
A、
3
2
B、2lg7
C、0
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中a1=1,当n≥2时,其前n项和Sn满足Sn(Sn-an)+2an=0.
(1)证明数列{
1
Sn
}是等差数列;
(2)求Sn和数列{an}的通项公式an
(3)设bn=
1
Sn
•2n+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

天猫电器城对TCL官方旗舰店某款4K超高清电视机在2014年11月11日的销售情况进行了统计,如图所示,数据显示,该日TCL官方旗舰店在[0,3)小时销售了该款电视机2台.
(1)TCL官方旗舰店在2014年11月11日的销售量是多少?
(2)TCL官方旗舰店在2014年11月11日[15,18)小时销售了该款电视机多少台?
(3)TCL官方旗舰店对在[0,6)小时出的该款电视机中随机取两台赠送礼物,求这两台电视机都是在[3,6)小时售出的概率?

查看答案和解析>>

同步练习册答案