精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=(1+cosx)3,则f′(x)=-3sinx(1+cosx)2

分析 根据复合函数的导数公式进行求导即可.

解答 解:∵f(x)=(1+cosx)3
∴f′(x)=3(1+cosx)2•(1+cosx)′
=-3sinx(1+cosx)2
故答案为:-3sinx(1+cosx)2

点评 本题主要考查函数的导数的计算,根据复合函数的导数公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的离心率是e,定义直线y=±$\frac{ab}{c}$心为椭圆的“类准线”.已知椭圆C的“类准线”方程为y=±2$\sqrt{3}$,长轴长为4.
(1)求椭圆C的方程;
(2)点p在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:x2+y2=3的切线l,过点O且垂直于0P的直线与l交于点A,问点A是否在椭圆C上?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f′(x0)=-3,则$\underset{lim}{h→0}$$\frac{f({x}_{0}-h)-f({x}_{0})}{h}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(2,1),且直线l:x-2y-$\sqrt{6}$=0过椭圆C的一个焦点.
(1)求椭圆C的方程;
(2)已知直线l′平行于直线l,且与椭圆C交于不同的两点M,N,记直线AM的倾斜角为θ1,直线AN的倾斜角为θ2,试探究θ12是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{$\frac{{a}_{n}}{n+2}$}为等比数列,且a2=16,a3=40,则数列{$\frac{{4}^{n}}{{a}_{n}{a}_{n+1}}$}的前60项和为$\frac{10}{63}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,若cosAsinB+cos(B+C)sinC=0,则△ABC的形状是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在正方体ABCD-A1B1C1D1中,AA1与C1D1所成的角为90°;AA1与B1C所成的角为45°;B1C与BD所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,过O作直线AB的垂线,垂足为P,若|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=$\sqrt{3}$,∠AOB=$\frac{π}{6}$,$\overrightarrow{OP}$=x$\overrightarrow{a}$+y
$\overrightarrow{b}$,则x-y=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x),g(x)分别是定义域为R的奇函数和偶函数,且f(x)+g(x)=3x.则f(1)的值为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案