精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=lnx+$\frac{1-x}{ax}$,(a>0)
(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在区间[1,+∞)上单调递增,求a的取值范围;
(3)求函数f(x)在区间[1,2]的最小值.

分析 (1)求出函数的导数,计算f(1),f′(1)的值,从而求出切线方程即可;
(2)求导,将函数f(x)在区间[1,+∞)上单调递增化为导数恒不小于0,从而求a的取值范围;
(3)讨论函数f(x)在区间[1,2]上的单调性,从而确定函数f(x)在区间[1,2]上的最小值.

解答 解:(1)a=2时,f(x)=lnx+$\frac{1-x}{2x}$,(x>0),且f(1)=0,
又∵f(x)=$\frac{2x-1}{{2x}^{2}}$,(x>0),
∴f(x)在x=1处的切线斜率为f′(1)=$\frac{1}{2}$,
故切线的斜率为y=$\frac{1}{2}$(x-1),
即x-2y-1=0;
(2)由题意,f′(x)=$\frac{1}{x}$-$\frac{1}{{ax}^{2}}$=$\frac{ax-1}{{ax}^{2}}$,
∵a为大于零的常数,
若使函数f(x)在区间[1,+∞)上单调递增,
则使ax-1≥0在区间[1,+∞)上恒成立,
即a-1≥0,故a≥1;
(3)①当a≥1时,f(x)在区间[1,2]上单调递增,
则fmin(x)=f(1)=0;
②当0<a≤$\frac{1}{2}$时,f′(x)在区间[1,2]恒不大于0,
f(x)在区间[1,2]上单调递减,
则fmin(x)=f(2)=ln2-$\frac{1}{2a}$;
③当$\frac{1}{2}$<a<1时,令f′(x)=0可解得,x=$\frac{1}{a}$∈(1,2);
易知f(x)在区间[1,$\frac{1}{a}$]单调递减,在[$\frac{1}{a}$,2]上单调递增,
则fmin(x)=f($\frac{1}{a}$)=ln$\frac{1}{a}$+1-$\frac{1}{a}$;
综上所述,
①当a≥1时,fmin(x)=0;
②当$\frac{1}{2}$<a<1时,fmin(x)=ln$\frac{1}{a}$+1-$\frac{1}{a}$;
③当0<a≤$\frac{1}{2}$时,fmin(x)=ln2-$\frac{1}{2a}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如下表:
患心肺疾病不患心肺疾病合计
大于40岁16
小于等于40岁12
合计40
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为$\frac{2}{5}$.
(1)请将2×2列联表补充完整;据此数据判断能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
(2)(2)已知大于40岁患心肺疾病市民中,经检查其中有4名重症患者,专家建议重症患者住院治疗,现从这16名患者中选出两名,记需住院治疗的人数为ξ,求ξ的分布列和数学期望
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系,已知直线l:$\left\{\begin{array}{l}{x=t}\\{y=1-\sqrt{3}t}\end{array}\right.$(t为参数)曲线C的极坐标方程为4ρcos2θ-sinθ=0.
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点,P(0,1),求||PA|-|PB||.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=4x,A,B是抛物线的两点(分别在x轴两侧),AB=6,过A,B分别作抛物线的切线l1,l2,l1与l2交于点Q,求三角形ABQ面积的最大值(  )
A.$\frac{27}{2}$B.8C.12$\sqrt{3}$D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=lnx-mx(m∈R)
(1)若函数y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a<-1”是“直线ax+2y-1=0的斜率大于1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\left\{\begin{array}{l}{1-lgx,x>1}\\{{x}^{3}-3x,x≤1}\end{array}\right.$.
(1)求函数f(x)的图象在点(-3,f(-3))处的切线方程;
(2)若函数f(x)的图象与直线y=m恰有2个不同的交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?a∈(-∞,-2),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角$θ>\frac{π}{4}$,则下面叙述正确的是(  )
A.¬p为:?a∈(-∞,-2),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角θ>$\frac{π}{4}$
B.¬p为:?a∈(-∞,-2),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角$θ>\frac{π}{4}$
C.¬p:?a∈[2,+∞),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角θ≤$\frac{π}{4}$
D.¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过抛物线y2=10x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若|AB|=16,则x1+x2=11.

查看答案和解析>>

同步练习册答案