精英家教网 > 高中数学 > 题目详情

如图甲,设正方形的边长为,点分别在上,并且满足
,如图乙,将直角梯形沿折到的位置,使点
平面上的射影恰好在上.

(1)证明:平面
(2)求平面与平面所成二面角的余弦值.

(1)先证(2)

解析试题分析:⑴证明:在图甲中,易知,从而在图乙中有,           
因为平面平面,所以平面
⑵解法1、
如图,在图乙中作,垂足为,连接
由于平面,则,                      
所以平面,则,                      
所以平面与平面所成二面角的平面角,     
图甲中有,又,则三点共线,     
的中点为,则,易证,所以,
又由,得,            
于是,,                                
中,,即所求二面角的余弦值为


解法2、
如图,在图乙中作,垂足为,连接,由于平面,则,                                                
所以平面,则,图甲中有,又,则三点共线,                                                     
的中点为,则,易证,所以,则
又由,得,               
于是,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形, ,分别为的中点,且.

(1)求证: ;
(2)求异面直线所成的角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体是底对角线的交点.

求证:(Ⅰ)∥面
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,为对角线的交点,的中点;

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(Ⅰ)  求证:平面平面
(Ⅱ)  当,且时,确定点的位置,即求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点.

(1)求证:OC⊥DF;
(2)求平面DEF与平面ABC相交所成锐二面角的大小;
(3)求多面体ABC—FDE的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P­ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2ADPD⊥底面ABCD
(1)证明:PABD;(2)设PDAD,求二面角APBC的余弦值.  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如图所示,其中分别是的中点.
(1)求证:平面
(2)在线段上(含端点)确定一点,使得∥平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)试建立适当的坐标系,并写出点P、B、D的坐标;
(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.

查看答案和解析>>

同步练习册答案