如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值. ![]()
(1)只需证明BD2+AD2=AB2;(2)
。
解析试题分析:(1)因为∠DAB=60°,AB=2AD,由余弦定理得
.
从而BD2+AD2=AB2,故BD⊥AD.
又PD⊥底面ABCD,可得BD⊥PD.
所以BD⊥平面PAD.故PA⊥BD. 6分
(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz.则A(1,0,0),B(0,
,0),C(-1,
,0),P(0,0,1).![]()
=(-1,
,0),
=(0,
,-1),
=(-1,0,0).
设平面PAB的法向量为n=(x,y,z),则![]()
即![]()
因此可取n=(
,1,
).
设平面PBC的法向量为m,则![]()
可取m=(0,-1,-
),
.
故二面角APBC的余弦值为
. 6分
考点:线面垂直的判定定理;线面垂直的性质定理;二面角。
点评:二面角的求法是立体几何中的一个难点。我们解决此类问题常用的方法有两种:①综合法,综合法的一般步骤是:一作二说三求。②向量法,运用向量法求二面角应注意的是计算。很多同学都会应用向量法求二面角,但结果往往求不对,出现的问题就是计算错误。
科目:高中数学 来源: 题型:解答题
如图甲,设正方形
的边长为
,点
分别在
上,并且满足
,如图乙,将直角梯形
沿
折到
的位置,使点
在
平面
上的射影
恰好在
上.![]()
(1)证明:
平面
;
(2)求平面
与平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。![]()
(I)求证:BF⊥平面DAF;
(II)求ABCD与平面CDEF所成锐二面角的某三角函数值;
(III)求多面体ABCDFE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知
为平行四边形,
,
,
,点
在
上,
,
,
与
相交于
.现将四边形
沿
折起,使点
在平面
上的射影恰在直线
上.![]()
(Ⅰ) 求证:
平面
;
(Ⅱ) 求折后直线
与平面
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为圆
的直径,点
、
在圆
上,
,矩形
所在的平面与圆
所在的平面互相垂直.已知
,
.![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求直线
与平面
所成角的大小;
(Ⅲ)当
的长为何值时,平面
与平面
所成的锐二面角的大小为
?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是以
为直径的半圆上异于
、
的点,矩形
所在的平面垂直于该半圆所在的平面,且
.![]()
(Ⅰ)求证:
;
(Ⅱ)设平面
与半圆弧的另一个交点为
.
①试证:
;
②若
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥
中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.![]()
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com