精英家教网 > 高中数学 > 题目详情

如图所示,在四面体中,两两互相垂直,且

(1)求证:平面平面
(2)求二面角的大小;
(3)若直线与平面所成的角为,求线段的长度.

(1)∵ ,∴ 平面,又平面,∴ 平面平面(2)(3)

解析试题分析:(1)∵
平面
平面
∴ 平面平面.                                  4分
(2)∵ ,∴ 平面

是二面角的平面角.                     6分
中,∵ ,∴
∴ 二面角的大小为.                          8分
(3)过点,垂足为,连接
∵ 平面平面,  ∴ 平面
与平面所成的角.
.                                   10分
中,,∴
又∵在中,,∴
∴ 在中,.                            12分
考点:空间线面垂直的判定和性质及二面角线面角
点评:面面垂直的判定主要利用垂直的判定定理和性质定理,本题中的二面角线面角求解时现根据定义做出相应的角,再通过解三角形求出角的大小

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

正四棱锥中,,点M,N分别在PA,BD上,且

(Ⅰ)求异面直线MN与AD所成角;
(Ⅱ)求证:∥平面PBC;
(Ⅲ)求MN与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面是边长为2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.

(1)证明:MN∥平面ABCD;
(2) 过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体是底对角线的交点.

求证:(Ⅰ)∥面
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半圆的直径,是半圆上除外的一个动点,平面,

⑴证明:平面平面
⑵试探究当在什么位置时三棱锥的体积取得最大值,请说明理由并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,为对角线的交点,的中点;

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(Ⅰ)  求证:平面平面
(Ⅱ)  当,且时,确定点的位置,即求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P­ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2ADPD⊥底面ABCD
(1)证明:PABD;(2)设PDAD,求二面角APBC的余弦值.  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科)(本小题满分12分)长方体中,是底面对角线的交点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面
(Ⅲ) 求三棱锥的体积。

查看答案和解析>>

同步练习册答案