(文科)(本小题满分12分)长方体中,,,是底面对角线的交点.
(Ⅰ) 求证:平面;
(Ⅱ) 求证:平面;
(Ⅲ) 求三棱锥的体积。
(Ⅰ)由,
且在平面外.得平面;
(Ⅱ)连结得到平面;
又∵在上,可得;
计算;
同理:∵中,
推出平面。
(Ⅲ)。
解析试题分析:(Ⅰ) 证明:依题意:,
且在平面外.…2分
∴平面 3分
(Ⅱ) 证明:连结∵
∴平面 4分
又∵在上,∴在平面上
∴ 5分
∵ ∴
∴∴中, 6分
同理:∵中,
∴ 7分,∴平面 8分
(Ⅲ)解:∵平面∴所求体积
12分
考点:本题主要考查立体几何中的平行关系、垂直关系,几何体体积的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。利用向量可简化证明过程。本题难度不大。
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是以为直径的半圆上异于、的点,矩形所在的平面垂直于该半圆所在的平面,且.
(Ⅰ)求证:;
(Ⅱ)设平面与半圆弧的另一个交点为.
①试证:;
②若,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com