精英家教网 > 高中数学 > 题目详情
7.已知数列{an}中,a1=2,an=2an-1+2n-1(n>2,且n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和为Sn

分析 (1)根据递推关系式符合an=pan-1+q(p、q为常数)的形式,利用构造新数列的方法求出数列的通项公式.
(2)利用(1)的结论,进一步利用等比数列的前n项和求出结果.

解答 解:(1)数列{an}中,a1=2,an=2an-1+2n-1(n>2,且n∈N*
则:设(an-k)=2(an-1-k),
整理得:an=2an-1-k,
所以:-k=2n-1
即:k=-2n-1
所以:数列{${a}_{n}+{2}^{n-1}$}是以${a}_{1}+{2}^{1-1}$为首项,2为公比的等比数列.
由于a1=2,
则:${a}_{n}+{2}^{n-1}=3•{2}^{n-1}$.
由于a1=2,
所以:${a}_{n}=2•{2}^{n-1}$=2n
所以数列{an}的通项公式为:${a}_{n}={2}^{n}$.
(2)由于有(1)得:${a}_{n}={2}^{n}$,
Tn=a1+a2+…+an
=21+22+…+2n
=$\frac{2({2}^{n}-1)}{2-1}={2}^{n+1}-2$

点评 本题考查的知识要点:利用构造新数列法求数列的通项公式,等比数列前n项和公式的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知10支晶体管中有5个次品,现从中不放回的连续依次取出两支,则两次取出的晶体管都是次品的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a1,a2,…an为实数,证明:a1c1+a2c2+…ancn≤a12+a22+…+an2,其中c1,c2,…,cn是a1,a2,…,an的任一排列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.10个人排成前后两排,每排5人,则不同排法的种数是${A}_{10}^{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设△ABC的内角A,B,C所对应的边长为a,b,c,且(2b-$\sqrt{2}$c)cosA=$\sqrt{2}$acosC.
(1)求角A的大小;
(2)若a=1,cosB=$\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.满足条件|z-2i|+|z+1|=$\sqrt{5}$的点的轨迹是线段.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,sinA=$\frac{3}{4}$,a=10,则边长c的取值范围是(0,$\frac{40}{3}$]..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=f(x)在定义域(-$\frac{3}{2}$,3)内可导,其图象如图所示,记y=f(x)的导函数为y′=f′(x),则不等式f′(x)≤0的解集为(  )
A.[-$\frac{1}{3}$,1]∪[2,3)B.[-1,$\frac{1}{2}$]∪[$\frac{4}{3}$,$\frac{8}{3}$]C.[-$\frac{3}{2}$,$\frac{1}{2}$]∪[1,2]D.[-$\frac{3}{2}$,-$\frac{1}{3}$]∪[$\frac{1}{2}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线$y=\frac{1}{4}{x^2}$,过点P(0,2)作直线l,交抛物线于A,B两点,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OB}$=-4.

查看答案和解析>>

同步练习册答案