精英家教网 > 高中数学 > 题目详情
4.曲线y=cosx(0≤x≤$\frac{3π}{2}$)与x轴以及直线x=$\frac{3π}{2}$所围图形的面积为(  )
A.4B.2C.$\frac{5}{2}$D.3

分析 根据所围成图形用定积分可求得曲线y=cosx以及直线x=$\frac{3π}{2}$所围图形部分的面积,然后根据定积分的定义求出所求即可.

解答 解:由定积分定义及余弦函数的对称性,
可得曲线y=cosx以及直线x=$\frac{3π}{2}$所围图形部分的面积为:
S=3∫${\;}_{0}^{\frac{π}{2}}$cosxdx=3sinx|${\;}_{0}^{\frac{π}{2}}$=3sin$\frac{π}{2}$-3sin0=3,
所以围成的封闭图形的面积是3.
故选:D.

点评 本题主要考查了定积分在求面积中的应用,考查运算求解能力,化归与转化思想思想,属于基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.对于函数f(x)=aex+x,若存在实数m,n,使得f(x)≥0的解集为[m,n](m<n),则实数a的取值范围是(  )
A.(-$\frac{1}{e}$,0)∪(0,+∞)B.[-$\frac{1}{e}$)∪(0,+∞)C.(-$\frac{1}{e}$,0)D.[-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.分别写出经过下列两点的直线的方程:
(1)(1,3),(-1,2);
(2)(2,3),(0,2);
(3)(3,3),(3,4);
(4)(-2,3),(3,3);
(5)(0,3),(-2,0);
(6)(2,0),(0,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)=2sin(-2x+$\frac{π}{3}$)的单调递增区间为[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)≤4;
(2)若存在x使得f(x)+a≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.3名男生和3名女生排成一排,男生不相邻的排法有144种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知m∈R,函数f(x)=mx-$\frac{m-1}{x}$-lnx,g(x)=$\frac{1}{x}$+lnx.
(1)求g(x)在x=1处的切线方程;
(2)若y=f(x)-g(x)在[1,+∞)上为单调增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z1=1+2i,z2=3-4i,则$\frac{z_1}{z_2}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将函数y=f(x)的图象(  )
A.向右平移$\frac{π}{8}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{8}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

同步练习册答案