【题目】某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始茎叶图可能是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中数学 来源: 题型:
【题目】如图,在梯形
中,
,
,
,平面
平面
,四边形
是矩形,
,点
在线段
上.
![]()
(1)当
为何值时,
平面
?证明你的结论;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:
.(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量x为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知
底面
,异面直线
和
所成角等于
.
![]()
(1)求证: 平面
平面
;
(2)求直线
和平面
所成角的正弦值;
(3) 在棱
上是否存在一点
,使得平面
与平面
所成锐二面角的正切值为
?若存在,指出点
在棱
上的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前
天参加抽奖活动的人数进行统计,
表示开业第
天参加抽奖活动的人数,得到统计表格如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
经过进一步统计分析,发现
与
具有线性相关关系.
(1)若从这
天中随机抽取两天,求至少有
天参加抽奖人数超过
的概率;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
,并估计若该活动持续
天,共有多少名顾客参加抽奖.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
)的部分图象如图所示. ![]()
(1)求f(x)>
在x∈[0,π]上的解集;
(2)设g(x)=2
cos2x+f(x),g(α)=
+
,α∈(
,
),求sin2α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前
天参加抽奖活动的人数进行统计,
表示开业第
天参加抽奖活动的人数,得到统计表格如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
经过进一步统计分析,发现
与
具有线性相关关系.
(1)根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)若该分店此次抽奖活动自开业始,持续
天,参加抽奖的每位顾客抽到一等奖(价值
元奖品)的概率为
,抽到二等奖(价值
元奖品)的概率为
,抽到三等奖(价值
元奖品)的概率为
.
试估计该分店在此次抽奖活动结束时送出多少元奖品?
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程是
(
是参数),以坐标原点为原点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)判断直线
与曲线
的位置关系;
(2)过直线
上的点作曲线
的切线,求切线长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com