精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系: .(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量x为多少时,可获得最大利润?

【答案】
(1)解:当x≥6时,P= ,则T= x×2﹣ x×1=0.

当1≤x<6时,P= ,则T=(1﹣ )x×2﹣( )x×1=

综上所述,日盈利额T(万元)与日产量x(万件)的函数关系为:T=


(2)解:由(1)知,当x≥6时,每天的盈利为0.

当1≤x<6时,T(x)= =15﹣2[(6﹣x)+ ]≤15﹣12=3,

∴T≤3.

当且仅当x=3时,T=3.

综上,当日产量为3万件时,可获得最大利润3万元


【解析】(1)每天的赢利为T=日产量(x)×正品率(1﹣P)×2﹣日产量(x)×次品率(P)×1,根据分段函数分段研究,整理即可;(2)利用基本不等式求函数的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)成立,若数列{an}满足 ,(n∈N*),且a1=f(0),则下列结论成立的是(
A.f(a2013)>f(a2016
B.f(a2014)>f(a2015
C.f(a2016)<f(a2015
D.f(a2014)<f(a2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设 与定点 的距离和它到直线 的距离的比是常数

(1)求点 的轨迹曲线 的方程:

(2)过定点 的直线 交曲线 两点,以 三点( 为坐标原点)为顶点作平行四边形 ,若点 刚好在曲线 上,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥(底面为正方形,顶点在底面上的射影是底面的中心)S﹣ABCD的底面边长为2,高为2,E为边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为(
A.
B.
C.3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过35微克/立方米, 的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年30天的24小时平均浓度(单位:微克/立方米)的监测数据,将这30天的测量结果绘制成样本频率分布直方图如图.

(Ⅰ)求图中的值;

(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为的圆形纸板内有一个相同圆心的半径为的小圆,现将半径为的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始茎叶图可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知动直线过点,且与圆交于两点.

(1)若直线的斜率为,求的面积;

(2)若直线的斜率为,点是圆上任意一点,求的取值范围;

(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案