精英家教网 > 高中数学 > 题目详情

【题目】如图,已知动直线过点,且与圆交于两点.

(1)若直线的斜率为,求的面积;

(2)若直线的斜率为,点是圆上任意一点,求的取值范围;

(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.

【答案】(1)(2)(3)

【解析】试题分析:

(1)利用题意分别求得距离和弦长可得

(2)利用题意得到关于纵坐标y的函数,结合定义域可得的取值范围是.

(3)联立直线和圆的方程,结合对称性可得点Q存在,其坐标为 .

试题解析:

解:(1)因为直线的斜率为,所以直线

则点到直线的距离

所以弦的长度

所以.

(2)因为直线的斜率为,所以可知

设点,则

所以,又

所以的取值范围是.

(3)法一: 若存在,则根据对称性可知,定点轴上,设、又设

因直线不与轴重合,设直线

代入圆

所以(*)

平分,则根据角平分线的定义,的斜率互为相反数

,又

化简可得

代入(*)式得,因为直线任意,故

, 即

解法二:若存在,则根据对称性可知,定点轴上,设、又设

因直线不与轴重合,设直线

代入圆

所以(*)

平分,则根据角平分线的几何意义,点轴的距离,点轴的距离满足,即

化简可得

代入(*)式得,因为直线任意,故

, 即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系: .(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量x为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步统计分析,发现具有线性相关关系.

(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)若该分店此次抽奖活动自开业始,持续天,参加抽奖的每位顾客抽到一等奖(价值元奖品)的概率为,抽到二等奖(价值元奖品)的概率为,抽到三等奖(价值元奖品)的概率为.

试估计该分店在此次抽奖活动结束时送出多少元奖品?

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2sin(﹣2x+ )的图象向左平移 个单位后,得到的图象对应的解析式应该是(
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+
C.y=﹣2sin(2x﹣
D.y=﹣2sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河北省衡水中学2017届高三上学期五调】已知椭圆,圆的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)若直线和函数的图象相切,求的值;

(Ⅱ)当时,若存在正实数,使对任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明

(2)若,求的取值范围;并证明此时的极值存在且与无关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为上顶点为,右顶点为,以为直径的圆过点,直线与圆相交得到的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆相交于两点, 轴, 轴分别相交于两点,满足:①记的中点为,且两点到直线的距离相等;②记的面积分别为取得最大值时,求的值.

查看答案和解析>>

同步练习册答案