精英家教网 > 高中数学 > 题目详情

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过35微克/立方米, 的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年30天的24小时平均浓度(单位:微克/立方米)的监测数据,将这30天的测量结果绘制成样本频率分布直方图如图.

(Ⅰ)求图中的值;

(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.

【答案】(Ⅰ); (Ⅱ)见解析.

【解析】试题分析:

(1)利用频率分布直方图小图形的面积之和为1求解实数a的值即可

(2)由频率分布直方图中估算样本平均数,将其与35进行比较大小即可得到结论.

试题解析:

(Ⅰ)由题意知,则.

(Ⅱ)(微克/立方米),

因为,所以该居民区的环境质量需要改善.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数).

(1)若函数在定义域上是单调函数,求实数的取值范围;

(2)求函数的极值点;

(3)令 ,设 是曲线上相异三点,其中.求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角ABC所对的边分别为abc,已知a=1b=2cosC=

I求△ABC的周长;II)求cosA﹣C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn= n,
(1)求通项公式an的表达式;
(2)令bn=an2n1 , 求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为3x+4y﹣12=0,求直线l'的方程,使得:
(1)l'与l平行,且过点(﹣1,3);
(2)l'与l垂直,且l'与两轴围成的三角形面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系: .(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量x为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,异面直线所成角等于.

(1)求证: 平面平面

(2)求直线和平面所成角的正弦值;

(3) 在棱上是否存在一点,使得平面与平面所成锐二面角的正切值为?若存在,指出点在棱上的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分图象如图所示.

(1)求f(x)> 在x∈[0,π]上的解集;
(2)设g(x)=2 cos2x+f(x),g(α)= + ,α∈( ),求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河北省衡水中学2017届高三上学期五调】已知椭圆,圆的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆两点,且的中点,求面积的取值范围.

查看答案和解析>>

同步练习册答案