精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知底面,异面直线所成角等于.

(1)求证: 平面平面

(2)求直线和平面所成角的正弦值;

(3) 在棱上是否存在一点,使得平面与平面所成锐二面角的正切值为?若存在,指出点在棱上的位置,若不存在,说明理由.

【答案】(1)见解析;(2);(3)存在这样的点, 为棱上靠近的三等分点.

【解析】试题分析:(1)要证平面平面,即证平面

(2)以为原点, 所在直线分别为轴,建立空间直角坐标系,求面的法向量,利用向量求线面角即可;

(3)假设存在,设,利用法向量求平面与平面所成角即可.

试题解析:

(1) 底面,又平面平面平面 平面平面.

(2)如图,以为原点, 所在直线分别为轴,建立空间直角坐标系,由(1)易知是等腰直角三角形, .设,则,则,因为异面直线所成角等于 ,即,解得.设平面的一个法向量为,则由,得,所以可取,所以直线和平面所成的正弦值为.

(3)假设存在,设,且,则,设平面一个法向量为,则由,得,取,又平面的法向量为,由平面与平面所成锐二面角的正切值为,可知余弦值为,由,解得(不合题意).

所以存在这样的点, 为棱上靠近的三等分点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形△ABC的三边长构成公差为2的等差数列,且最大角的正弦值为 ,则这个三角形的周长为(
A.15
B.18
C.21
D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过35微克/立方米, 的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年30天的24小时平均浓度(单位:微克/立方米)的监测数据,将这30天的测量结果绘制成样本频率分布直方图如图.

(Ⅰ)求图中的值;

(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=n﹣5an﹣85,n∈N+
(1)求an
(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始茎叶图可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知满足.

(1)求取到最值时的最优解;

2)求的取值范围;

3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产两种产品,其中生产每吨产品,需要甲染料吨,乙染料吨,丙染料吨,生产每吨产品,需要甲染料吨,乙染料吨,丙染料吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过吨、吨、吨,如果产品的利润为元/吨, 产品的利润为元/吨,则该颜料公司一天内可获得的最大利润为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)当时,讨论函数的单调性;

(2)当时,求证:对任意的.

查看答案和解析>>

同步练习册答案