精英家教网 > 高中数学 > 题目详情
10.过椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点P向圆x2+y2=2引两条切线,切点分别为A、B,直线AB与x、y轴分别交于M、N两点,O为坐标原点,则△MON的面积的最小值为(  )
A.$\frac{1}{2}$B.1C.2D.4

分析 设A(x1,y1),B(x2,y2),则PA、PB的方程分别为x1x+y1y=2,x2x+y2y=2,而PA、PB交于P(x0,y0),由此能求出AB的直线方程,求得M,N的坐标,从而可得三角形的面积,利用基本不等式可求最值.

解答 解:设A(x1,y1),B(x2,y2),
由OA⊥PA,可得切线PA:y-y1=-$\frac{{x}_{1}}{{y}_{1}}$(x-x1),
x12+y12=2,
化简可得x1x+y1y=2,
同理PB的方程x2x+y2y=2,
而PA、PB交于P(x0,y0),
即x1x0+y1y0=2,x2x0+y2y0=2,
可得AB的直线方程为:x0x+y0y=2,
即有M($\frac{2}{{x}_{0}}$,0),N(0,$\frac{2}{{y}_{0}}$),
又S△MON=$\frac{1}{2}$|OM|•|ON|=|$\frac{2}{{x}_{0}{y}_{0}}$|,
又|x0y0|=2|$\frac{{x}_{0}}{2}$•y0|≤$\frac{{{x}_{0}}^{2}}{4}$+y02=1,
则S△MON≥2,
当且仅当|x0|=2|y0|时,△MON的面积的最小值为2.
故选:C.

点评 本题考查直线和圆的位置关系,主要是切线方程的求法,考查三角形的面积的最值,注意运用基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y2=2px(p>0)上的动点Q到其焦点的距离的最小值为1,则p=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}满足a1+a2=10,a4=a3+2,则a3+a4=(  )
A.2B.14C.18D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若定义运算a*b=$\left\{\begin{array}{l}{b(a≥b)}\\{a(a<b)}\\{\;}\end{array}\right.$,则函数f(x)=3x*3-x的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.“|${\overrightarrow a}$|=|${\overrightarrow b}$|”是“$\overrightarrow a$=$\overrightarrow b$”的必要不充分条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=($\frac{1}{2}$)x2+4x+3,g(x)=x+$\frac{1}{x}$+t,若?x1∈R,?x2∈[1,3],使得f(x1)≤g(x2),则实数t的取值范围是$[-\frac{4}{3},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某重点高中拟把学校打造成新兴示范高中,为此制定了很多新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取100名学生进行问卷调查,调查卷共有20个问题,每个问题5分,调查结束后,按成绩分成5组;第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),绘制成如图所示的频率分布直方图,已知甲、乙两人同在第3组,丙、丁二人同在第4,5组,现在用分层抽样的方法在第3,4,5组共选取6人进行强化培训.
(1)求第3,4,5组分别选取的人数;
(2)求这100人的平均得分(同一组数据用该区间的中点值作代表);
(3)记X表示甲、丙、丁三人被选取的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数y=$\sqrt{2}$sin(2x-$\frac{π}{4}$)的图象,只需将函数y=sin2x+cos2x的图象(  )
A.向左平移$\frac{π}{2}$个单位长度B.向右平移$\frac{π}{2}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

查看答案和解析>>

同步练习册答案