精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=($\frac{1}{2}$)x2+4x+3,g(x)=x+$\frac{1}{x}$+t,若?x1∈R,?x2∈[1,3],使得f(x1)≤g(x2),则实数t的取值范围是$[-\frac{4}{3},+∞)$.

分析 函数f(x)=($\frac{1}{2}$)x2+4x+3=$(\frac{1}{2})^{(x+2)^{2}-1}$,利用复合函数、指数函数与二次函数的单调性可得最大值.g(x)=x+$\frac{1}{x}$+t,g′(x)=1-$\frac{1}{{x}^{2}}$=$\frac{{x}^{2}-1}{{x}^{2}}$,利用导数研究其单调性即可得出最大值.根据?x1∈R,?x2∈[1,3],使得f(x1)≤g(x2),可得g(x)max≥f(x)max,即可得出.

解答 解:函数f(x)=($\frac{1}{2}$)x2+4x+3=$(\frac{1}{2})^{(x+2)^{2}-1}$,
∵x∈R,∴u(x)=(x+2)2-1≥-1,
∴f(x)∈(0,2].
∵g(x)=x+$\frac{1}{x}$+t,g′(x)=1-$\frac{1}{{x}^{2}}$=$\frac{{x}^{2}-1}{{x}^{2}}$,
∴当x∈[1,3]时,g′(x)≥0,
∴函数g(x)在x∈[1,3]时的单调递增,∴g(x)max=g(3)=$\frac{10}{3}$+t.
?x1∈R,?x2∈[1,3],使得f(x1)≤g(x2),
∴g(x)max≥f(x)max,∴$\frac{10}{3}$+t≥2,解得$t≥-\frac{4}{3}$.
则实数t的取值范围是$[-\frac{4}{3},+∞)$.
故答案为:$[-\frac{4}{3},+∞)$.

点评 本题考查了指数函数与二次函数的单调性、利用导数研究其单调性极值与最值、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆方程是$\frac{x^2}{4}+\frac{y^2}{3}$=1,F1,F2是它的左、右焦点,A,B为它的左、右顶点,l是椭圆的右准线,P是椭圆上一点,PA、PB分别交准线l于M,N两点.
(1)若P(0,$\sqrt{3}$),求$\overrightarrow{M{F_1}}•\overrightarrow{N{F_2}}$的值;
(2)若P(x0,y0)是椭圆上任意一点,求$\overrightarrow{M{F_1}}•\overrightarrow{N{F_2}}$的值;
(3)能否将问题推广到一般情况,即给定椭圆方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),P(x0,y0)是椭圆上任意一点,问$\overrightarrow{M{F_1}}•\overrightarrow{N{F_2}}$是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(x+1),g(x)=$\frac{ax}{x+a}$,a>1.
(I)若函数f(x)与g(x)在x=1处切线的斜率相同,求a的值:
(Ⅱ)设F(x)=f(x)-g(x),求F(x)的单调区间:
(Ⅲ)讨论关于x的方程|f(x)|=g(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点P向圆x2+y2=2引两条切线,切点分别为A、B,直线AB与x、y轴分别交于M、N两点,O为坐标原点,则△MON的面积的最小值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x3+4x+5在x=1处的切线方程为7x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-2ax2+bx,
(Ⅰ)f(x)在点P(1,3)处的切线为y=x+2,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下求f(x)在[-1,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知圆O:x2+y2=4和椭圆C:$\frac{{x}^{2}}{4}$+y2=1,动直线l过点M(0,$\frac{3}{2}$)且与圆O交于A,B两点,自A,B分别作x轴的垂线交椭圆C于A1,B1,A1与A,B1与B不在x轴的异侧.
(1)请探究:直线A1B1是否过定点?
(2)若直线AB和A1B1相交,证明交点在x轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{3i-2}{i-1}$(i是虚数单位)在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}中,a1=3,an+1-3an=0,bn=log3an,则数列{bn}的通项公式bn=(  )
A.3n+1B.3nC.nD.n-1

查看答案和解析>>

同步练习册答案