精英家教网 > 高中数学 > 题目详情
20.为了得到函数y=$\sqrt{2}$sin(2x-$\frac{π}{4}$)的图象,只需将函数y=sin2x+cos2x的图象(  )
A.向左平移$\frac{π}{2}$个单位长度B.向右平移$\frac{π}{2}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

分析 利用两角和与差的正弦函数化简两个函数的表达式为同名函数,然后利用左加右减的原则确定平移的方向与单位.

解答 解:∵y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)=$\sqrt{2}$sin[2(x+$\frac{π}{8}$)].
y=$\sqrt{2}$sin(2x-$\frac{π}{4}$)=$\sqrt{2}$sin[2(x-$\frac{π}{8}$)]=$\sqrt{2}$sin[2(x+$\frac{π}{8}$-$\frac{π}{4}$)],
∴只需把函数y=sin2x+cos2x的图象向右平移$\frac{π}{4}$个长度单位,得到函数y=$\sqrt{2}$sin(2x-$\frac{π}{4}$)的图象.
故选:D.

点评 本题考查两角和与差的正弦函数的化简,三角函数的图象的变换,注意化简同名函数与x的系数为“1”是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.过椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点P向圆x2+y2=2引两条切线,切点分别为A、B,直线AB与x、y轴分别交于M、N两点,O为坐标原点,则△MON的面积的最小值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{3i-2}{i-1}$(i是虚数单位)在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-1≤0,x∈Z},B={-2,-1,0,1,2},则A∩B子集的个数为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}中a2=5,前4项和为S4=28;
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n,Tn=anb1+an-1b2+an-2b3+…+a2bn-1+a1bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于4+4$\sqrt{3}$,棱锥的体积等于

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}中,a1=3,an+1-3an=0,bn=log3an,则数列{bn}的通项公式bn=(  )
A.3n+1B.3nC.nD.n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l:y=kx+1与椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<2).
(1)若l与C恒有公共点,求椭圆C离心率的取值范围;
(2)若b=$\sqrt{2}$,令直线l与椭圆C的交点为A、B,求线段AB中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线$\frac{{x}^{2}}{m}$-y2=1(m>0)的离心率为$\frac{2\sqrt{3}}{3}$,则m的值为3.

查看答案和解析>>

同步练习册答案