精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的首项a1=2,点($\frac{1}{2}$an,an+1+1)在函数f(x)=2x+3的图象上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满bn=$\frac{1}{{a}_{n}^{2}-1}$,Tn为数列{bn}的前n项和,且T1,Tm,T6m成等比数列,求正整数m的值.

分析 (1)运用等差数列的定义和通项公式,即可得到所求数列的通项;
(2)化简数列bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和可得Tn=$\frac{n}{2n+1}$,再由等比数列的性质,解方程可得m=2.

解答 解:(1)点($\frac{1}{2}$an,an+1+1)在函数f(x)=2x+3的图象上.
即有an+1+1=an+3,
即为an+1=an+2,
则数列{an}为首项为2,公差为2的等差数列,
即有an=2n;
(2)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
Tn=b1+b2+…+bn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
T1,Tm,T6m成等比数列,
即为$\frac{1}{3}$,$\frac{m}{2m+1}$,$\frac{6m}{12m+1}$成等比数列,
即有$\frac{1}{3}$•$\frac{6m}{12m+1}$=($\frac{m}{2m+1}$)2
化简可得4m2-7m-2=0,
解得m=2(-$\frac{1}{4}$舍去).

点评 本题考查数列的通项的求法,同时考查等比数列的性质,以及数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|=$\sqrt{10}$.
(Ⅰ)求复数z;
(Ⅱ)在复平面内,若复数$\overline{z}$+$\frac{m+i}{1-i}$(m∈R)对应的点在第四象限,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1和F2是双曲线$\left\{\begin{array}{l}x=2secθ\\ y=tanθ\end{array}\right.(θ为$为参数)的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,那么△F1PF2的面积是(  )
A.1B.$\frac{{\sqrt{5}}}{2}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数f(x)=xlnax(其中a>0)在区间(0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z=(a-2)+ai(a∈R,i为虚数单位)为纯虚数,则${∫}_{0}^{a}$$\sqrt{4-{x}^{2}}$dx的值为(  )
A.πB.$\frac{π}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.讨论函数y=tan(x+$\frac{π}{4}$)的性质.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=arcsin(x2-2x)的单调递减区间是$[1-\sqrt{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,已知曲线C1的方程为x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,且取相同的单位长度建立极坐标系,已知直线l的极坐标方程为ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)设P为曲线C2上任意一点,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知c<d,a>b>0,下列不等式中必成立的一个是(  )
A.a+c>b+dB.a-c>b-dC.ad<bcD.$\frac{a}{c}$>$\frac{b}{d}$

查看答案和解析>>

同步练习册答案