精英家教网 > 高中数学 > 题目详情
16.设f′(x)为f(x)的导函数,f″(x)是f′(x)的导函数,如果f(x)同时满足下列条件:①存在x0,使f″(x0)=0;②存在?>0,使f′(x)在区间(x0-?,x0)单调递增,在区间(x0,x0+?)单调递减.则称x0为f(x)的“上趋拐点”;
如果f(x))同时满足下列条件:①存在x0,使f″(x0)=0;②存在?>0,使f′(x)在区间(x0-?,x0)单调递减,在区间(x0,x0+?)单调递增.则称x0为f(x)的“下趋拐点”.给出以下命题,其中正确的是①③④(只写出正确结论的序号)
①0为f(x)=x3的“下趋拐点”;
②f(x)=x2+ex在定义域内存在“上趋拐点”;
③f(x)=ex-ax2在(1,+∞)上存在“下趋拐点”,则a的取值范围为($\frac{e}{2}$,+∞);
④f(x)=$\frac{1}{a}$eax$-\frac{1}{2}$x2(a≠0),x0是f(x)的“下趋拐点”,则x0>1的必要条件是0<a<1.

分析 ①求导f′(x)=3x2,f″(x)=6x;令f″(x)=6x=0解得x=0;再判断单调性从而可得0为f(x)=x3的“下趋拐点”;
②求导f′(x)=2x+ex,f″(x)=2+ex;易知f′(x)=2x+ex在R上是增函数,故f(x)=x2+ex在定义域内不存在“上趋拐点”;
③求导f′(x)=ex-2ax,f″(x)=ex-2a,可判断f″(x)=ex-2a在定义域上是增函数,从而问题转化为f″(1)=e-2a<0,从而解得;
④求导f′(x)=eax-x,f″(x)=a•eax-1;从而可得a•${e}^{a{x}_{0}}$-1=0,即x0=$\frac{-lna}{a}$;从而可得$\frac{-lna}{a}$>1,从而解得.

解答 解:①f(x)=x3,f′(x)=3x2,f″(x)=6x;
令f″(x)=6x=0解得,x=0;
取?=1,则易知f′(x)=3x2在区间(-1,0)单调递减,在区间(0,1)单调递增.
故0为f(x)=x3的“下趋拐点”,故①正确;
②f(x)=x2+ex,f′(x)=2x+ex,f″(x)=2+ex
易知f′(x)=2x+ex在R上是增函数,
故f(x)=x2+ex在定义域内不存在“上趋拐点”,故②是假命题;
③f(x)=ex-ax2,f′(x)=ex-2ax,f″(x)=ex-2a;
易知f″(x)=ex-2a在定义域上是增函数,
故f(x)=ex-ax2在(1,+∞)上存在“下趋拐点”可化为
f″(1)=e-2a<0,
解得,a>$\frac{e}{2}$;故③正确;
④f(x)=$\frac{1}{a}$eax$-\frac{1}{2}$x2,f′(x)=eax-x,f″(x)=a•eax-1;
∵x0是f(x)的“下趋拐点”,
∴a•${e}^{a{x}_{0}}$-1=0,
∴x0=$\frac{-lna}{a}$;
∴$\frac{-lna}{a}$>1,
∴0<a<1;故④正确;
故答案为:①③④.

点评 本题考查了导数的综合应用及学生对新定义的理解与掌握,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届江西省红色七校高三上学期联考一数学(理)试卷(解析版) 题型:选择题

已知是三角形的最大内角,且,则的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,为了测定对岸A、B两点之间的距离,在河的一岸定一条基线CD,测得CD=100米,∠ACD=80°,∠BCD=45°,∠BDC=70°,∠ADC=33°,求A、B间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若复数z1满足(z1-z)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,z1•z2是实数.
(1)求z2
(2)若|z|=1,求|z-z2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,CD是圆O的切线,切点为D,CA是过圆心的割线且交圆O于B点,过B作⊙O的切线交CD于点E,DE=$\frac{1}{2}$EC.求证:
(1)CA=3CB;
(2)CA=$\sqrt{3}$CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U={1,2,3,4,5},A={2,3,4},B={1,3,5},则(∁UA)∩B=(  )
A.{3}B.{1,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线y2=2px(p>0)的焦点F与双曲线x2-$\frac{{y}^{2}}{3}$=1的右顶点重合,抛物线与直线l:y=k(x-2)(k≠0)交于A、B两点,AF、BF的延长线与抛物线交于C、D两点.
(1)求抛物线的方程;
(2)求证:直线CD恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若△ABC中,内角A、B、C的对边分别为a、b、c,若A=$\frac{2π}{3}$,b=1,且△ABC的面积为$\sqrt{3}$,则$\frac{a+b}{sinA+sinB}$的值为2$\sqrt{7}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{2}$|sin2x|的周期是$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案