【题目】如图,已知点
在圆柱
的底面圆
上,
为圆
的直径.
![]()
(1)若圆柱
的体积
为
,
,
,求异面直线
与
所成的角(用反三角函数值表示结果);
(2)若圆柱
的轴截面是边长为2的正方形,四面体
的外接球为球
,求
两点在球
上的球面距离.
【答案】(1)异面直线
与
所成的角为
;(2)
.
【解析】
(1)由题设条件,以O为原点,分别以OB,OO1为y,z轴的正向,并以AB的垂直平分线为x轴,建立空间直角坐标系,求出
与
的坐标,用公式求出线线角的余弦即得.
(2)由题意找到球心并求得R与∠AGB,即可求出A,B两点在球G上的球面距离.
(1)以O为原点,分别以OB,OO1为y,z轴的正向,并以AB的垂直平分线为x轴,
建立空间直角坐标系.
由题意圆柱
的体积
为
=4
,解得AA1=3.
易得各点的坐标分别为:A(0,﹣2,0),
,A1(0,﹣2,3),B(0,2,0).
得
,
,
设
与
的夹角为θ,异面直线A1B与AP所成的角为α,
则
,得
,
即异面直线A1B与AP所成角的大小为arccos
.
![]()
(2)由题意得AA1=2,OB=1,四面体
的外接球球心
在A1B的中点,所以R=
,此时
=
,所以
两点在球
上的球面距离为
.
科目:高中数学 来源: 题型:
【题目】近年电子商务蓬勃发展,
年某网购平台“双
”一天的销售业绩高达
亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出
次成功交易,并对其评价进行统计,网购者对商品的满意率为
,对快递的满意率为
,其中对商品和快递都满意的交易为
次.
(1)根据已知条件完成下面的
列联表,并回答能否有
的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 |
| ||
对商品不满意 | |||
合计 |
|
(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取
次交易进行问卷调查,详细了解满意与否的具体原因,并在这
次交易中再随机抽取
次进行电话回访,听取购物者意见.求电话回访的
次交易至少有一次对商品和快递都满意的概率.
附:
(其中
为样本容量)
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
![]()
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现拟建一个粮仓,如图1所示,粮仓的轴截而如图2所示,ED=EC,AD
BC,BC⊥AB,EF⊥AB,CD交EF于点G,EF=FC=10m.
![]()
(1)设∠CFB=θ,求粮仓的体积关于θ的函数关系式;
(2)当sinθ为何值时,粮仓的体积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量
、
之间的线性回归方程为
,且变量
、
之间的一-组相关数据如下表所示,则下列说法错误的是( )
|
|
|
|
|
|
|
|
|
|
A.可以预测,当
时,
B.![]()
C.变量
、
之间呈负相关关系D.该回归直线必过点![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆锥
如图①所示,图②是它的正(主)视图.已知圆
的直径为
,
是圆周上异于
的一点,
为
的中点.
(I)求该圆锥的侧面积S;
(II)求证:平面
⊥平面
;
(III)若∠CAB=60°,在三棱锥
中,求点
到平面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为
,点
在椭圆C上,直线
与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
Ⅰ
求椭圆C的方程;
Ⅱ
在x轴上是否存在点P,使得无论非零实数k怎样变化,总有
为直角?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com