精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,A=450,AB=,BC=2,求解此三角形.

【答案】B=75°, C=60°, AC=或C=120°, B=15°,AC=

【解析】试题分析:方法一先由正弦定理求得,再用三角形内角和定理求得,最后用正弦定理求

方法二:先由余弦定理求得,再用正弦定理求得,最后用三角形内角和定理求

试题解析:方法一

在△ABC中,A=45°,,BC=2,

由正弦定理得,

,

,所以

①当时, ,

由正弦定理得,

②当时,

由正弦定理得,

综上

方法二:

由余弦定理:BC2=AC2+AB2﹣2ABACcosA

整理得

解得:AC=AC=

,BC=2,AC=AC=,BC=2,

在△ABC中由正弦定理得

可得:sinC=

A=45°,A+B+C=180°

0C135°

C=60°时,则B=180°﹣45°﹣60°=75°.

C=120°时,则B=180°﹣45°﹣120°=15°.

综上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1,△ABC的面积为 ,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产两种产品,其中生产每吨产品,需要甲染料吨,乙染料吨,丙染料吨,生产每吨产品,需要甲染料吨,乙染料吨,丙染料吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过吨、吨、吨,如果产品的利润为元/吨, 产品的利润为元/吨,则该颜料公司一天内可获得的最大利润为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱A1B1C1 - ABC中,侧棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是

A. CC1与B1E是异面直线 B. AC丄平面ABB1A1

C. A1C1∥平面AB1E D. AE与B1C1为异面直线,且AE丄B1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1 =-2,a12 =20.

(1)求数列{an}的通项an

(2)若bn=,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考山东理数】平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点FC的一个顶点.

I)求椭圆C的方程;

II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.

i)求证:点M在定直线上;

ii)直线与y轴交于点G,记的面积为的面积为,求 的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2
(1)若α为第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]内的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心在直线x+3y﹣15=0上.
(1)求圆C的方程;
(2)设点P在圆C上,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图

(1)求出表中的的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在的选取2名担任主要发言人.记这2名主要发言人年龄在的人数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案