精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(1)求回归直线方程,其中.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

【答案】(1) (2) 该产品的单价应定为元时,工厂获得利润最大.

【解析】分析:(1)根据表中数据计算,求出a的值,写出线性回归方程;(2)设工厂获得的利润为L元,利用利润=销售收入﹣成本建立函数,利用配方法可求工厂获得利润最大时产品的定价.

详解:

(1)

.

(2)工厂获得利润 .

时,(元).

即该产品的单价应定为元时,工厂获得利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2018年高校自主招生期间,某校把学生的平时成绩按“百分制”折算,选出前名学生,并对这名学生按成绩分组,第一组,第二组,第三组,第四组,第五组.如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.

(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;

(2)若大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.

①若大学本次面试中有三位考官,规定获得至少两位考官的认可即为面试成功,且各考官面试结果相互独立.已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为,求甲同学面试成功的概率;

②若大学决定在这6名学生中随机抽取3名学生接受考官的面试,第3组有名学生被考官面试,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示甲在号车站下车,乙在号车站下车

)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;

)求甲、乙两人同在第3号车站下车的概率;

)求甲、乙两人在不同的车站下车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆圆心坐标为点为坐标原点,轴、轴被圆截得的弦分别为.

(1)证明:的面积为定值;

(2)设直线与圆交于两点,若,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )

A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是菱形,底面上的任意一点

求证:平面平面

,求点到平面的距离

的条件下,若,求与平面所成角的正切值

查看答案和解析>>

同步练习册答案