精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

【答案】C
【解析】解:若 对x∈R恒成立,
则f( )等于函数的最大值或最小值
即2× +φ=kπ+ ,k∈Z
则φ=kπ+ ,k∈Z

即sinφ<0
令k=﹣1,此时φ= ,满足条件
令2x ∈[2kπ﹣ ,2kπ+ ],k∈Z
解得x∈
故选C
由若 对x∈R恒成立,结合函数最值的定义,我们易得f( )等于函数的最大值或最小值,由此可以确定满足条件的初相角φ的值,结合 ,易求出满足条件的具体的φ值,然后根据正弦型函数单调区间的求法,即可得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F分别是B1A1 , CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.

(1)证明:DF⊥AE;
(2)求平面DEF与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)当x>0时,函数g(x)= (a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:.

(1)求家庭的月储蓄对月收入的线性回归方程

(2)指出(1)中所求出方程的系数,并判断变量之间是正相关还是负相关;

(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,某地最近几年某商品的需求量逐年上升.下表为部分统计数据:

年份

需求量(万件)

为了研究计算的方便,工作人员将上表的数据进行了处理,令.

(1)填写下列表格并求出关于的线性回归方程:

时间代号

(万件)

(2)根据所求的线性回归方程,预测到年年底,某地对该商品的需求量是多少?

(附:线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(1)求回归直线方程,其中.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

同步练习册答案