精英家教网 > 高中数学 > 题目详情
11.抛物线y2=-2px(p>0)的准线与圆(x-4)2+y2=1相切,则此抛物线上一点P(-3,m)到焦点的距离为(  )
A.2B.6或8C.8D.2或8

分析 由抛物线y2=-2px(p>0)的准线与圆(x-4)2+y2=1相切,得$\frac{p}{2}$=3或5,利用抛物线的定义,求出抛物线上一点P(-3,m)到焦点的距离.

解答 解:∵抛物线y2=-2px(p>0)的准线与圆(x-4)2+y2=1相切,
∴$\frac{p}{2}$=3或5,
∴此抛物线上一点P(-3,m)到焦点的距离为$\frac{p}{2}$+3=6或8,
故选:B.

点评 本题考查抛物线的相关几何性质及直线与圆的位置关系等基础知识,考查运算求解能力,考查数形结合思想,注意应用直线与圆相切时圆心到直线的距离等于半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若等边三角形ABC的边长为2,N为AB的中点,且AB上一点M满足$\overrightarrow{CM}$=x$\overrightarrow{CA}$+y$\overrightarrow{CB}$,则当$\frac{1}{x}$+$\frac{4}{y}$取最小值时,$\overrightarrow{CM}$•$\overrightarrow{CN}$=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cos(2x-\frac{π}{3})+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$.
(1)求函数f(x)的单调递增区间;
(2)将y=f(x)的图象向左平移$\frac{π}{3}$个单位长度,再将得到的图象横坐标变为原来的2倍(纵坐标不变),得到y=g(x)的图象;若函数y=g(x)在区间$(\frac{π}{2},\frac{13π}{4})$上的图象与直线y=a有三个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a=(2,1),\overrightarrow b=(3,m)$,若向量$(2\overrightarrow a-\overrightarrow b)$与向量$\overrightarrow b$共线,则$|{\overrightarrow b}|$=(  )
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{5}$C.$\frac{{3\sqrt{7}}}{2}$D.$3\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若三个实数2,m,6成等差数列,则m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知幂函数y=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则(  )
A.f(1)>f(2)B.f(1)<f(2)
C.f(1)=f(2)D.f(1)与f(2)大小无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某品牌汽车的4S店对最近60位采用分期付款的购车者人数进行统计,统计结果如下表所示:
付款方式分1期分2期分3期分4期
频数20a14b
已知分4期付款的频率为$\frac{1}{6}$,并且4S店销售一辆该品牌的汽车,顾客分1期付款其利润为1万元,分2期或3期付款其利润为2万元,分4期付款其利润为3万元,以频率作为概率.
(1)求事件A“购买该品牌汽车的3位顾客中,至多有1位分4期付款”的概率;
(2)用X表示销售一两该品牌汽车的利润,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设P:方程$\frac{{x}^{2}}{3-a}$+$\frac{{y}^{2}}{1+a}$=1表示椭圆,Q:(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P∧Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\sqrt{3}sinωx+cosωx(ω>0)$的最小正周期为π,把f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数R的图象.则g(x)的解析式为(  )
A.g(x)=2sin2xB.$g(x)=2sin(2x+\frac{2π}{3})$C.g(x)=2cos2xD.$g(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

同步练习册答案