精英家教网 > 高中数学 > 题目详情
6.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{6}$

分析 由已知中的三视图可得:该几何体是两个以俯视图为底面的四棱锥组成的组合体,进而得到答案.

解答 解:由已知中的三视图可得:该几何体是两个以俯视图为底面的四棱锥组成的组合体,
底面底面面积为:1×1=1,
高均为:$\frac{\sqrt{2}}{2}$,
故体积V=2×$\frac{1}{3}$×1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{3}$,
故选:C.

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,正确的是(  )
A.若输入a,b,c的值依次为1,2,3,则输出的值为5
B.若输入a,b,c的值依次为1,2,3,则输出的值为7
C.若输入a,b,c的值依次为2,3,4,则输出的值为8
D.若输入a,b,c的值依次为2,3,4,则输出的值为10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线的虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$或y=$±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.运行如图所示的程序框图,若输入的实数为2,则输出的n为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若点A(2,2)在矩阵M=$[\begin{array}{l}{cosα}&{-sinα}\\{sinα}&{cosα}\end{array}]$对应变换的作用下得到的点为$B(-1-\sqrt{3},-1+\sqrt{3})$,求矩阵M的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{2e}$
(Ⅰ)求f(x)的表达式
(Ⅱ)求函数f(x)在[1,e2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:${a_1}=\frac{1}{2},{a_1}+{a_2}+…+{a_n}={n^2}{a_n}(n∈{N^*})$
(1)求a2,a3
(2)猜想{an}通项公式并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中曲线${C_1}:{x^2}+{y^2}=1$经伸缩变换$\left\{{\begin{array}{l}{{x^2}=2x}\\{{y^2}=y}\end{array}}\right.$后得到曲线C2,在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C3的极坐标方程为$ρ=\frac{-8}{ρ-6sinθ}$.
(1)求曲线C2的参数方程和C3的直角坐标方程;
(2)设M为曲线C2上的一点,又M向曲线C3引切线,切点为N,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为(  )
A.36B.48C.64D.72

查看答案和解析>>

同步练习册答案